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Abstract
Perception, representation, and memory of ensemble statistics has attracted growing interest. Studies found that, at different
abstraction levels, the brain represents similar items as unified percepts. We found that global ensemble perception is automatic
and unconscious, affecting later perceptual judgments regarding individual member items. Implicit effects of set mean and range for
low-level feature ensembles (size, orientation, brightness) were replicated for high-level category objects. This similarity suggests
that analogous mechanisms underlie these extreme levels of abstraction. Here, we bridge the span between visual features and
semantic object categories using the identical implicit perception experimental paradigm for intermediate novel visual-shape
categories, constructing ensemble exemplars by introducing systematic variations of a central category base or ancestor. In five
experiments, with different item variability, we test automatic representation of ensemble category characteristics and its effect on a
subsequent memory task. Results show that observer representation of ensembles includes the group’s central shape, category
ancestor (progenitor), or group mean. Observers also easily reject memory of shapes belonging to different categories, i.e. origi-
nating from different ancestors.We conclude that complex categories, like simple visual form ensembles, are represented in terms of
statistics including a central object, as well as category boundaries. We refer to the model proposed by Benna and Fusi (bioRxiv
624239, 2019) that memory representation is compressed when related elements are represented by identifying their ancestor and
each one’s difference from it. We suggest that ensemble mean perception, like category prototype extraction, might reflect em-
ployment at different representation levels of an essential, general representation mechanism.
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Introduction

It has beenwidely reported that we perceive themean and range
of image sets. This has been found for basic image parameters
such as circle size, disc brightness, line orientation, image color,
motion speed, and direction, and for more complex variables
such as face emotion, identity, and lifelikeness (see
Background, below). We recently extended the study of the

ensemble statistics phenomenon to include the realm of uncon-
scious perception, finding that observers base task judgements
on the automatically, unconsciously perceived mean of a recent
past sequence of images (Khayat & Hochstein, 2018).
Furthermore, we found similarity between characteristics of
set range and mean perception and image category and proto-
type perception (Khayat & Hochstein, 2019a). But categoriza-
tion is generally of well-known categories learned over life-
time experience. It is also generally a more cognitive, seman-
tic phenomenon, while the basic features tested in ensemble
statistics perception were more sensory and not semantic. We
now bridge the gap between categorization and set statistics
perception by testing perception of the mean and category of
novel image categories, learned “on-the-fly” while viewing a
single sequence of category exemplars.

A second goal of the current study was to enable direct
measurement of category member proximity to or distance
from the category mean or prototype. In our previous study
relating categorization to set perception, we used an auxiliary
experiment to test category exemplar typicality (Khayat &
Hochstein 2019a). In that experiment, we presented two test
images, one a member of a previously named category and
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one of a different category, and measured the speed by which
observers judged which image was the member of the named
category. The faster the response, the closer to the prototype
was the object image considered. While this is an accepted
methodology for determining object category typicality (e.g.,
Ashby & Maddox, 1994; Rosch, Simpson, & Miller, 1976),
and its appropriateness was confirmed by the consistency of
the experimental results, it is indirect, may be culturally and
semantically determined, and may not reflect the same aspect
of typicality as measured in the sequence memory test. The
current study was thus designed to allow direct measures of
distance from the category mean.

The third goal relates to a recent paper by Benna and Fusi
(2019) concerning efficient representation of correlated pat-
terns (see also Schapiro & Turk-Browne, 2015). Most patterns
stored in memory are highly correlated with others, as we
often have similar experiences. Storing correlated patterns in
their original format is not optimal, and capacity can be in-
creased by taking the correlations into account. For example,
patterns may be organized in an (ultrametric) tree, as in Fig. 1a
(see, e.g., Rammal et al., 1986). If we start with a small set of
uncorrelated patterns (the ancestors at the top of the tree) and
generate numerous descendants for each ancestor (by modify-
ing activation of some ancestor-representing neurons), then
the descendants of each ancestor are correlated by their

similarity to the ancestor. Benna and Fusi suggest that effi-
cient representation of such patterns is by storing the identity
of the appropriate ancestor, and the difference between it and
each descendant, as in Fig. 1a. By construction, the ancestor-
descendant differences are small and approximately uncorre-
lated. Amore general compression strategy that can be applied
to any set of correlated patterns (not only those organized in an
ultrametric tree) is based on sparse auto-encoders (Olshausen
& Field, 1996).Wewished here to determine if using stimulus
patterns that are related in such an ancestor-descendant fash-
ion would lead to automatic perception of the ancestor pattern,
irrespective of whether it is presented in an image sequence.

Background

There has been a great deal of recent interest in perception of
summary statistics of sets of stimulus elements. Observers
reliably represent the mean and range of stimulus sets, even
without reportable perception of individual set members.
They rapidly extract summary statistics from sets of similar
items, when these are presented spatially (Alvarez & Oliva,
2009; Ariely, 2001) or temporally (Corbett & Oriet, 2011;
Gorea, Belkoura, & Solomon, 2014; Hubert-Wallander &
Boynton, 2015). Statistics include average, and range or

Fig. 1 Storing correlated patterns. (a) Schematic representation of an
ultra-metric tree with p ancestors and k descendants per ancestor used
to generate correlated patterns. (b) Possible scheme using correlations to

generate compressed representations that are sparse and more efficiently
storable. From Benna and Fusi (2019)
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variance of their size (Allik, Toom, Raidvee, Averin, &
Kreegipuu, 2014; Ariely, 2001; Corbett & Oriet, 2011;
Khayat & Hochstein, 2018; Morgan, Chubb, & Solomon,
2008; Solomon, 2010), orientation (Alvarez & Oliva, 2009;
Khayat & Hochstein, 2018; Hochstein, Pavlovskaya, Bonneh,
& Soroker, 2018), brightness (Bauer, 2009; Khayat &
Hochstein, 2018), spatial position (Alvarez & Oliva, 2008),
and speed and direction of motion (Sweeny, Haroz, &
Whitney, 2013). Thus, summary statistics extraction appears
to be a general mechanism operating on various stimulus at-
tributes, including low-level information, as mentioned above,
and more complex characteristics, such as facial expression
(emotion) and gender (Haberman & Whitney, 2007, 2009;
Neumann, Schweinberger, & Burton, 2013), object lifelike-
ness (Yamanashi-Leib, Kosovicheva, & Whitney, 2016), bio-
logical motion of human crowds (Sweeny, Haroz, &Whitney,
2013), and numerical averaging (Brezis, Bronfman, & Usher,
2015; for recent reviews, see Bauer, 2015; Cohen et al., 2016;
Haberman & Whitney, 2012; Hochstein, Pavlovskaya,
Bonneh, & Soroker, 2015). Examples of methods used in
these studies are shown in Fig. 2.

We suggested that the cerebral mechanism for categorization
may be related to that underlying set perception since they share
basic characteristics (Hochstein, 2016a, 2016b; Khayat &
Hochstein, 2019a). In both cases, when viewing sets of similar
items, we consider them the same, as a shortcut to representa-
tion and prescription of an appropriate response (Ariely, 2001;
Medin, 1989; Rosch & Mervis, 1975; Rosch, Mervis, et al.,
1976). Globally spreading attention, we see a line of cars, shelf
of bottles, flock of sheep, or copse of trees. We then categorize
these objects and relate to the average properties of each cate-
gory. Similarly, laboratory experiments, present a set of circles
(Alvarez & Oliva, 2008; Ariely, 2001; Corbett & Oriet, 2011;
Khayat & Hochstein, 2018), line segments (Khayat &
Hochstein, 2018; Robitaille & Harris, 2011), or faces
(Haberman & Whitney, 2007, 2009), and observers perceive
the images as circles, lines, or faces and relate to their average
properties. Categorization emphasizes relevant or common
properties, de-emphasizing irrelevant or uncommon properties
(Fabre-Thorpe, 2011; Goldstone & Hendrickson, 2010;
Hammer, Diesendruck, Weinshall, & Hochstein, 2009;
Rosch, Mervis, et al., 1976; Rosch, 1973, 1999, 2002; Rosch
& Lloyd, 1978). Similarly, set perception captures summary
statistics without noting individual values. Categorization, like
ensemble perception, may depend on rapid feature extraction to
determine presence of defining object characteristics. Set per-
ception includes mean and range (Ariely, 2001; Chong &
Treisman, 2003, 2005; Khayat & Hochstein, 2018; Hochstein
et al., 2018), and categorization might rely on the related prop-
erties of prototype (or mean exemplar; e.g., Ashby & Maddox,
2011) and inter-category boundaries (or category range; e.g.,
Goldstone & Kersten, 2003). We confirmed this conceptual
similarity, finding that set characteristics are perceived

implicitly and automatically (Khayat & Hochstein, 2018), just
as objects are categorized implicitly and automatically at their
basic category level (Potter & Hagmann, 2015; Rosch, Mervis,
et al., 1976). It has also been suggested that determining wheth-
er objects belong to a single category may depend on the same
characteristics that define them as a set (Utochkin, 2015).
Finally, our studies showed that the detailed properties of set
and category perception are similar (Khayat & Hochstein,
2019a), suggesting that analogous mechanisms might be re-
sponsible for their cerebral representation. This analogy is de-
tailed below.

Previous studies

We studied implicit perception and memory of set statistics by
presenting a rapid serial visual presentation (RSVP) sequence
of images differing by low-level properties (circles of different
size, lines of different orientation, discs of different brightness;
see Fig. 2B), and testing only memory of the members seen in
the sequence (Khayat & Hochstein, 2018). The mean of the
set – mean size circle, mean orientation line, or mean bright-
ness disk – was sometimes included in the set sequence.
Following set RSVP presentation, we presented two images
simultaneously, side by side, one SEEN in the sequence and
one a NEW item. We tested observer memory by asking par-
ticipants to choose which test image had been SEEN in the
sequence. We did not inform them that one test element could
be the sequence mean, whether the SEEN test item (i.e., a
RSVP sequence member) or the NEW foil item, (i.e., not a
sequence member). Also, we did not inform them that some-
times the NEW test image was outside the sequence range.
We purposely did not mention the words “mean” and “range,”
so that we could test if observers automatically perceive set
mean and choose test items that match the mean. We also
asked if observers would automatically perceive set property
range and easily reject foils outside the sequence range.

We call these test-stimulus contingencies trial subtypes, as
shown in Table 1, using the following terms: “in” and “out” –
test elements within and outside the range of the variable
sequence property; “mean” – element with property equal to
mean of sequence.

We expected, as then found, that it would be difficult for
participants to perceive, represent, and remember all the im-
ages in each sequence, and that they would depend, instead,
on implicit perception of the sequence mean to direct their
choice of test image. Thus, as displayed in Table 1, when
neither image is the mean, baseline performance would be
low, and when one of the test images is the mean, it will be
preferred. On the other hand, an image that is outside the range
of sequence images would be more easily rejected. This is
what occurred, as demonstrated in Fig. 3a. Furthermore, per-
ception of the sequence mean was graded in that elements
closer to the mean were preferred and this preference grew
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as the difference between the distances of the SEEN and NEW
element test images from the mean grew, as shown in Fig. 3c.

The same pattern of results was found for sequences of
images of objects belonging to a single category. Some

perception of the objects was maintained in memory, but
when one of the test object images was the category prototype,
it was preferred, as shown in Fig. 3b, whether it was the SEEN
or the NEW object. Implicit perception of each trial’s se-
quence category and its prototype led to a graded preference
for the object image that was more typical of the category, as
demonstrated in Fig. 3d. The categorization experiment re-
sults all show greater accuracy than the low-level feature ex-
periment, presumably because participants remember some
individual pictures of real objects. Nevertheless, the similarity
of Fig. 3a and b and of Fig. 3c and d suggests that analogous
mechanisms might underlie both phenomena – ensemble
mean perception, on the one hand, and object categorization
and category prototype derivation, on the other.

Fig. 2 Previous study stimulus sets. (A) Ariely’s (2001) schematic rep-
resentation of the two intervals used in his experiment’s trials. Observers
were exposed for 500 ms to a set of spatially dispersed circles differing by
size and then asked if a test stimulus size had been present in the set, or is
smaller/larger than the set mean. (B) Khayat and Hochstein’s (2018)
RSVP sequences consisted of 12 elements, each presented for 100 ms
plus a 100-ms inter-stimulus interval (ISI), followed by a two-alternative
forced-choice (2-AFC)membership test (i.e., which test element had been
present in the sequence). Blocks contained circles differing in size, lines
differing in orientation, or discs differing in brightness. Observers were

asked which of two test elements was present in the set. They were
unaware that either test element could equal the set mean or the nonmem-
ber could be outside the set range. (C) Haberman and Whitney’s (2009)
task included four faces (from a set of 4, 8, 12, or 16), differing in facial
emotional expression, presented for 2 s. Observers then indicated whether
the test face was a member of the set, or was happier/sadder than the set
mean. (D) Brezis et al.’s (2015) trials consisted of two-digit numbers
sequentially presented at a rate of 500 ms/stimulus. Set size was 4, 8, or
16. Participants estimated set average

Table 1 Test image (subtype) contingences and expected results

SEEN test element
Correct

NEW test element
Incorrect

Expected performance

In range Out of range Best

Mean In range Better

In range In range Baseline

In range Mean Worse

Atten Percept Psychophys



Noting that the categories of the categorization experiment
were learned over a lifetime of experience, while the low-level
parameter sequences were learned on-the-fly, we sought an
intermediary test of categories that could be learned on-the-
fly, trial by trial. In addition, the graded measure of typicality
in the categorization test depended on an auxiliary experiment
to determine each object’s typicality (see Khayat &
Hochstein, 2019a), and we wish to test categorization where
typicality is directly measurable. These were central goals of
the current set of experiments, as outlined in the
Introduction and described in the Methods.

Methods

Design and stimuli

We performed five sets of experiments with novel “amoeba”
shapes (e.g., Fig. 4a). Precise construction of the shapes, the
ancestors, and their descendants are described below for each
experiment. The general design of all the experiments was the
same as for the low-level and categorization experiments de-
scribed above (Khayat & Hochstein, 2018, 2019a; Figs. 2B
and 3, Table 1). As demonstrated in Figs. 4b, 6d, and 8, on

each trial a sequence of eight stimuli was presented in RSVP
in the center of the monitor screen with an exposure time of
100 ms/stimulus and a 100-ms ISI (in Experiment 1,
sequences included five images, each presented twice), all in
random order. Participants were instructed to remember all the
stimuli to perform the two-alternative-forced choice (2-AFC)
task, which followed. Here, two stimuli were presented side
by side, one which was SEEN in the sequence and one which
was NEW; presentation was until response. Participants were
instructed to indicate which stimulus was a member of the
sequence by pressing the left (NEW image) or right (SEEN
image) arrow on the keyboard. The stimuli of each trial’s
sequence belonged to a single ensemble, as described below.

The role of the new aspect in the current experiments is two-
fold: first, we mimic the ancestor-descendent tree suggested by
Benna and Fusi (2019); in addition, we create new categories
that participants can learn on-the-fly, on a trial-by-trial basis. In
each RSVP ensemble sequence, all member exemplars are de-
scendants of one ancestor, including, on some trials, the ancestor
itself. Examples of sets of Experiment 1 amoeba shapes are
shown in Fig. 4a, where in each case the central image is the
ancestor and the surrounding eight images are descendants.

We did not tell the participants that the sequence some-
times included the ancestor. Furthermore, one of the two

Fig. 3 Low-level parameter mean perception (a, c) compared to category
prototype perception (b, d). Participants viewed a sequence of images
varying in a low-level parameter (Fig. 1b), i.e., circle size, line orientation,
or disc brightness (a, c), or a sequence of object images from a single
category (b, d), followed by two test images, one SEEN in the sequence
and one NEW. They were asked to choose the SEEN image. Participants
had difficulty remembering sequence images. Instead, the SEEN (graph
blue bar) or NEW (red) image that matched the mean or category proto-
type was preferred, relative to the case where neither test image matched
the mean or prototype (green) and a NEW image from outside the range or

from a different category was rejected (black). See text. From Khayat and
Hochstein (2018, 2019a). This preference was graded in that the closer the
test image to the mean (c) or the greater its category typicality (d), the
greater the chance of its being chosen as SEEN, asmeasured by probability
of choice dependence on the difference between the test images’ distance
from the mean (c) or difference in their typicality (d). prot = prototypical
object image, in = in range, out = out of range, mean = ensemble mean.
Error bars in all figures indicate standard error of the mean. Differences in
mean accuracy between all pairs of trial subtypes in both low-level and
categorization studies were significant, p < 0.05
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side-by-side test images, SEEN or NEW, could be the ensem-
ble ancestor. If the ancestor was included in the sequence, then
it could be the SEEN test image; if it was not included in the
sequence, it could be the NEW test image. Of course, SEEN
and NEW test images could also both be descendants. Finally,
sometimes a descendant of another ancestor was used as the
NEW test image. Participants were not informed of these test
image conditions and were assumed to be naïve to involvement
of ancestor, descendant, or any other ensemble statistics. Any
effect of thesemeasures on performance would thus be implicit.

The task requested of the participants was to remember the
images presented in the RSVP sequence. However, we expect
participants to have difficulty remembering them, and instead
to depend on their implicit perception of the ancestor –wheth-
er presented or not. Thus, if neither test image is the ancestor,
performance accuracy should be close to 50%. If the SEEN

image is the ancestor, accuracy (fraction of correctly identify-
ing the SEEN images) should be larger, and if the NEW image
is the ancestor, it may falsely be chosen as if seen, and accu-
racy should drop. Finally, if one test image is from a different
ancestor, it should be more easily rejected and accuracy
should be enhanced. The alternative test subtypes are shown
in Table 2. For Experiments 1–3, 20 different trials of each
subtype were presented to each participant; for Experiment 4,
24 trials each, and for Experiment 5, 64 trials each.

Participants

Experiments were conducted using the Amazon Mechanical
Turks (MTurks) website, a crowdsourcing platform enabling
coordination of online participants of uploaded human cogni-
tive tasks, using Adobe Flash. Participants provided informed

a

b

Fig. 4 (a) Examples of random amoeba shapes for Experiment 1. The
central image is the ancestor and the surrounding eight images are
descendants, created by applying distortions to the ancestor, enlarging
or compressing, rotating, stretching, or shrinking. (b) Trial design.

RSVP sequences of ten elements, followed by a two-alternative forced-
choice (2-AFC) membership test, asking which test element had been
present in the sequence
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consent and received compensation. Participants were naïve as
to the purpose of the experiment, and, as mentioned above,
were not aware of test image contingencies such as ancestor,
descendant, or category.

We had little control of experimental conditions, but per-
formance itself indicates whether participants were trying to
perform the task or were pressing responses randomly. We
excluded data of participants whose overall accuracy was be-
low 55%, and any trial where response time (RT) was below
200 ms or longer than 3 s. We tested 600 MTurks for the five
experiments reported here, excluding data of 24 (Experiment
1: 50 participants; Experiment 2: 150, of which five were
excluded; Experiment 3: 100, ten excluded; Experiment 4:
100, nine excluded; Experiment 5: 200, no exclusions).

Data analysis

One-way repeated-measure analysis of variance (RM-
ANOVA) was conducted to verify that performance accuracy
differences were due to biases to the ensemble characteristics
of membership test stimuli (e.g., similarity to ensemble ances-
tor) in different trial subtypes, rather than participant differ-
ences in performance. Variance differences of ancestor effects
were measured (within subjects) by three trial subtypes (inde-
pendent variables; baseline trial vs. trials where the SEEN or

NEW test stimuli were equal to the ancestor). Variance be-
tween baseline trials and trials where the NEW was derived
from a different ancestor was measured to evaluate effect of
ensemble range. Additionally, (one-tailed) t-tests between the
averaged results over participants for different subtype com-
binations were performed to investigate ancestor and range
representation effects. Some of these experiments have been
reported previously in meeting abstract or brief communica-
tion format (e.g., Hochstein, 2019; Hochstein et al., 2018,
2020; Hochstein, Khayat, Pavlovskaya, Bonneh, & Soroker,
2019; Hochstein, Khayat, Pavlovskaya, Bonneh, Soroker, &
Fusi, 2019; Khayat & Hochstein, 2019b).

In the Appendix we present violin plots of the data for each
experiment.

Results

Experiment 1: Sets of random amoeba shapes

To mimic the ancestor-descendent tree suggested by Benna
and Fusi (2019), we drew random shapes in PowerPoint – the
ancestors – and then applied various distortions to the shapes
to create descendants. Distortions included enlarging or
compressing, rotating, and stretching or shrinking in one di-
mension. Examples of sets of random amoeba shapes are
shown in Fig. 4a, where in each case the central image is the
ancestor and the surrounding eight images are descendants.
Each trial had a sequence of ten images (five different images
presented twice each, in random order), derived from a new
ancestor, and thus new descendants, so that each image was
only part of a single sequence.

Performance for the amoeba ancestor-descendant experi-
ment adhered to the expectations of Table 2, as shown in
Fig. 5. Performance for baseline, where both SEEN and
NEW test elements were descendants, was 0.54 ± 0.017 (av-
erage ± S.E.M., here and throughout; Fig. 5a, green bar),

Fig. 5 Experiment 1 – random amoeba images. (a) Perception and mem-
ory of the ancestor, whether present (blue) or absent (red) steers perfor-
mance above or below baseline (green), respectively. Rejecting images
from another ancestor improves performance dramatically (grey). Thus,
participants clearly perceive the amoeba forms as a set with a definite

ancestor image from which they descend. Differences in mean accuracy
between each two trial subtypes were significant (p < 0.001). (b) Reaction
time (RT) for different trial subtypes, for correct (green) and incorrect (red)
responses, for each trial type

Table 2 Test image (subtype) contingences and expected results for all
experiments

SEEN test
element
Correct

NEW test element
Incorrect

Expected
performance

Descendant Descendant of
different ancestor

Best

Ancestor Descendant Better

Descendant Descendant Baseline

Descendant Ancestor Worse
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slightly but significantly above 50% (t-test; p < 0.01), suggest-
ing that there was some, though little, memory of the SEEN
images. There was considerable dependence on perception
and memory of the ancestor, as shown by RM-ANOVA on
the three relevant trial subtypes (here and in subsequent
experiments): baseline and trials where SEEN or NEW
shapes were the ensemble base, (F(2,98) = 70.59, p <
0.001), so that when the SEEN element was the ancestor,
performance was elevated to 0.78 ± 0.016 (Fig. 5a, blue bar;
t-test: p < 0.001; all t-tests are across participants, relative to
baseline where SEEN and NEW are both descendants). When
the NEW element was the ancestor, preferring it lowered per-
formance (measured always as choice of the SEEN element),
to 0.41 ± 0.014 (Fig. 5a, red bar; t-test: p < 0.001). We use as a
general measure of ancestor perception the difference between
performance when the SEEN image is the ancestor (raising
performance) and when the NEW image is the ancestor (re-
ducing performance). Here that is 0.67–0.41 = 0.26 (t-test
difference: p < 0.001).

Performance when the NEWelement was a descendant of a
different ancestor (range effect, when the SEEN element was a
descendant, Fig. 5a, grey bar) was elevated to 0.95 ± 0.014
(RM-ANOVA comparing NEW element originating from
same ancestor, i.e. baseline, or different ancestor; here and in
subsequent experiments: F(1, 49) = 327.09, p < 0.001). Thus,
participants easily rejected elements from a different ancestor.
This was confirmed by the RT measure (Fig. 5b) showing no
speed-accuracy trade-off. While generally longer responses
are expected for incorrect choices (not significant here), we
found this gap was greatly increased for the easier condition,
when the NEW test shape was from a different ancestor (t-test
p < 0.005).

We conclude that for random amoeba-like ancestor shapes,
distorted to create sets of descendants, participants perceive
these images as belonging together, that is, as forming a set
or category. Furthermore, they easily recognize the ancestor
shape and remember it better than the descendants. In addition,
they form a representation of the ancestor even when it has not
been seen together with a set of descendants, and recall this
never-seen image better than each of the seen descendants.

Experiment 2. Sets of star-like amoeba shapes

Methods – Experiments 2–5

The goal of Experiments 2–5 was to produce amoeba shapes
more systematically, allowing for measured distances be-
tween ancestor and descendant. In an ideal ultrametric tree,
there are equal distances of each descendent from the ancestor.
For example, if the ancestor is represented by a pattern of
activity in n neurons, then each ancestor might have the ac-
tivity of exactly m neurons changed from those of the ances-
tor, with most neurons, n-m, remaining unchanged. Here we

start with star-like amoeba shapes, which are very different,
and make relatively small changes to form descendants.

Experimental procedure was the same as for Experiment 1,
except that the stimuli were all star-like images. We chose
star-like amoeba shapes with p = 3–6 outer points or vertices.
Stimuli for Experiments 2–5 were generated using
Psychtoolbox Version 3 for MATLAB. Construction of the
stars was as follows: We chose two circles with radii OR
(outer radius = half of the width or height of the full used
portion of the screen) and IR (inner-radius = 0.2, 0.3, or 0.4
times OR) and drew p equidistant points on the outer circle
beginning with 0o at the rightmost point on the circle, and p
points half-way (in angular degrees) between each pair, on the
inner circle. We then drew q (= 1, 3, or 6) equidistant dots
between each outer point and the closest inner points;
connecting these constructs the star. To have the star less
pointy, i.e. with more rounded outer and inner vertices, we
used the Python Pycairo library 1.18.1 smooth-connect func-
tion to connect the dots. Figure 6a demonstrates this procedure
and shows examples of such equidistant-point stars.

Star amoeba ancestors were constructed beginning with one
of the equidistant stars (choosing the number p of points, and
the inner:outer radius ratio, IR:OR), rotating the entire star by
an angle θ, where -90/p < θ < +90/p. Then, to render the star
points non-equidistant, we shifted each outer vertex, i, by angle
γi, where -180/p < γi < 180/p. Inner radius points were shifted
to remain halfway between the closest outer points. Then each
outer vertex was shifted inward, towards the inner circle, by
0.25–0.5 times (OR–IR) and each inner vertex was shifted out-
ward towards the outer circle, increasing its radius to 1.5–1.75
times IR. Examples of ancestor stars are shown in Fig. 6b.

For each ancestor star, we constructed up to a dozen de-
scendants by changing one or two of the following parame-
ters: general rotation of the star (by ±20o or ±40o); rotation of
some points along their circles (one point by ±10o or half the
points (p/2 points for even p; (p+1)/2 for odd p) by ±15o);
changing the radial distance of some points (one point or half
the points) from the OR (×0.6 or 0.55) or IR (×2.0 or 2.2)
circles. Note that these changes were small compared to the
differences between ancestors (changes were slightly different
for the first 50 and last 95 participants, as indicated; differ-
ences between the results were insignificant). Examples of
ancestors and their descendants for Experiment 2 are shown
in Fig. 6c and in the trial illustration in Fig. 6d.

It became clear, both from computation and from experi-
ence with pilot experimentation, that the ancestor image
drawn in this fashion, and used to construct the descendants,
was not equal to the mean of the descendants. For example, if
some descendants were rotated clockwise and none were ro-
tated counter-clockwise, then the average was necessarily
more clockwise than the base. It is possible, even likely, that
participants derive as the set ancestor, the mean of the images
seen in the sequence, rather than the base we used to create the
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descendants. We therefore tested for perception and memory
of both base and mean images, compared with memory of
descendant images presented in the RSVP sequence. To this
end, for each sequence, we computed the average position of
each star vertex, and use this as the mean shape. Thus, in
Table 2, wherever the term “ancestor” appears, we conducted
two tests, once with the base, and once with the computed
mean. Tests for NEW = different ancestor included SEEN =
descendant, mean or base; since these are relatively close, we

present data here only for SEEN = descendant. In Experiment
5, below, we construct descendant sets where their mean was
exactly the ancestor.

Results

The ancestor (base or mean) and range effects seen for low-
level parameters, for categories, and for random amoeba
shapes (Experiment 1) are confirmed here, as shown in

c 2AFC membership task

Fig. 6 Constructing ancestor and descendants of star-like Amoeba shapes.
(a) Equidistant symmetric star-like shapes defined by number of corners, p,
across; inner:outer vertex radius ratio, IR:OR, down; and sharpness-
roundness level, within each square. (b) Examples of ancestors, constructed
from symmetric star-like shapes by general rotation; rotating local outer
vertices individually; and shifting local vertex radii inward or outward

(decreasing and increasing them, respectively). (c) Illustration of ancestor
modification for Experiment 2, creating its descendants by increasing or
decreasing local Inner or outer vertex radii, respectively, general rotation
and/or local vertex point rotation. (d) Illustration of Experiment 2 trial
paradigm: RSVP (100ms/shape + 100-ms ISI; up to two changes/stimulus)
followed by a two-alternative forced-choice (2-AFC) membership task

Fig. 7 Experiment 2. (a) Accuracy of membership task performance for
the different trial subtypes, illustrating implicit statistical effects of mean
(dark blue and red bars vs. baseline green bar), base (light blue and pink

vs. green) and range effect (grey vs. green). (b) Correct (green) and
Incorrect (red) response RTs for each subtype, illustrating absence of
speed-accuracy trade-off
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Fig. 7a. Judging by either base or mean, perception and mem-
ory of the ancestor is superior to that of descendant shapes
(RM-ANOVA: base: F(2,288) = 65.128, p < 0.001; mean:
F(2, 288) = 133.192 , p < 0.001), so that when judging which
of two test images was present in the trial sequence, partici-
pants are better at recognizing the base (0.61 ± 0.011, Fig. 7a,
light blue bar) or mean (0.65 ± 0.01, dark blue) rather than
another image (0.55 ± 0.009, baseline, Fig. 7a, green bar); and
chose this image even when not included in the sequence,
whether the base (0.44 ± 0.01, pink bar) or mean (0.39 ±
0.011, red; percent less than 50% means greater choice of
the NEW image not included in the sequence). In addition,
when the NEW image was from another ancestor, it was easily
rejected (F(1,144) = 191.871, p < 0.001), so that performance
was high (0.77 ± 0.013, Fig. 7a, grey bar). All result t-tests
showed p < 0.001, here and in all comparisons, unless explic-
itly stated otherwise.

Note that the ancestor effect was greater (t-test, p < 0.001)
for the mean (0.65–0.39 = 0.25 ± 0.19; SEEN = mean vs.
NEW = mean) than for the base (0.61–0.44 = 0.170 ± 0.16;
SEEN = base vs. NEW = base), as might be expected, as the
alleged “ancestor” derived by the participants from the se-
quence elements would be closer to the mean than to the base.
Nevertheless, the base effect is also significant, and close to
the mean effect, as might be expected since mean and base
images are similar.

RTs are shown in Fig. 7b. The general rule of correct re-
sponses being faster than incorrect ones is maintained slightly
for baseline, and strongly when the NEW image is from a
different base, but is overshadowed by the choice of mean or
base being faster than choice of the alternative test image.
Thus, when the mean or base was in the sequence, correct trial
responses are faster than incorrect responses, and when the
mean or base was not in the sequence, but appeared as a test
image, it was chosen more often that the alternative, and such
“incorrect” choices were faster. While this effect is present for
both base and mean tests, interestingly, the shift in relative RT
for SEEN = base/mean compared to NEW = base/mean was
greater for base than mean (t-test: base RT effect p < 0.001;
mean RT effect n.s.).

Experiment 3. Sets of star-like amoeba shapes – one
change at a time

Thus far, we have found that viewing sequences of random
amoeba (Experiment 1) or star amoeba (Experiment 2) shapes,
participants show the same pattern of perceptual results on the
subsequent memory test as they do with sequences of low-
level parameter or category membership sequences. We now
wished to find which star amoeba ancestor-descendant chang-
es have the most influence on perception, and result in the
largest mean and base effects. If we change one parameter at
a time, which will show the greatest mean and base effects,

and which changes will not be perceived as strongly by par-
ticipants? This was the goal of Experiment 3.

Experimental designs of Experiments 3–5 are like those of
Experiments 1–2, with specific changes of descendant vari-
ability (differences from ancestor). Modification details are
provided in each experiment. Trial designs of Experiments
3–5 are illustrated in Fig. 8.

Experimental paradigm for Experiment 3 was the same
as for Experiment 2 (see Fig. 8A), except that now there
was only one change in each descendant image from its
ancestor, either global image rotation, or star point rotation,
or outer or inner point radius change (changing p/2 points
for even p; (p+1)/2 for odd p).

Results

The basic ancestor (base or mean) and range effects seen for
low-level parameters, and in Experiments 1 and 2 are con-
firmed here, as shown in Fig. 9a. Judging by either base or
mean, perception and memory of the ancestor is superior to
that of descendant shapes (base: F(2,178) = 44.742, p <
0.001; mean: F(2,178) = 30.03, p < 0.001), so that when
judging which of two test images was present in the trial
sequence, participants are better at recognizing the base
(0.57 ± 0.014; t-test: p = 0.07, Fig. 9a, light blue bar) or
mean (0.62 ± 0.016; t-test: p < 0.001, dark blue bar) rather
than another image (0.54 ± 0.012, baseline, green bar); and
chose this image even when not included in the sequence,
whether the base (0.40 ± 0.012; t-test: p < 0.001, pink) or
mean (0.45 ± 0.016; t-test: p < 0.001, red). When the NEW
image was from another ancestor, it was easily rejected
(F(1,89) = 54.458, p < 0.001), so that performance was ele-
vated (0.68 ± 0.018; t-test: p < 0.001, grey bar). RTs are
shown in Fig. 9b. Incorrect choices (red bars) are generally
slower than correct choices (green) except for choosing NEW
= base, but this preference is not significant (p = 0.32).

Unlike in Experiment 2, here the relative ancestor effect
was about the same for mean and base, (0.57–0.40 = 0.62–
0.45 = 0.17 ± 0.02 in both cases; t-test SEEN vs. NEW = base
or mean p < 0.001; t-test SEEN = base minus NEW = base vs.
SEEN = mean minus NEW = mean, p = 0.47), reflecting an
equal asymmetry in that both NEW = base < NEW = mean
and SEEN = base < SEEN = mean, though each inequality
is significant (i.e. performance in trials where the NEW
shape is the base shows lower accuracy vs. where it is the
mean; and performance when the SEEN shape is the base
shows lower accuracy vs. when it is the mean; p < 0.01 in
both cases).

The main goal of this experiment was to compare the
effects of different changes in the ancestor to create the
descendants. In Fig. 10 we plot the average of the mean
and base effects for each ancestor-to-descendant modifica-
tion, i.e. accuracy when SEEN = mean/base minus accuracy
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when NEW = mean/base. The two largest effects were
changes of inner or outer radius, which were significantly
larger than the effects of the other modifications, namely,
global rotation, and outer or inner angle shifts. We therefore
decided to concentrate on these larger effects in the follow-
ing experiment.

Experiment 4. Sets of star-like amoeba
shapes – radius changes

The goal of Experiment 4 was to vary the degree of radius
change to quantify the amoeba shape mean and base effects
and their dependence on the degree of change.Wewish to plot

Fig. 8 Trial examples for Experiments 3–5. Paradigm like Experiments
1–2, with RSVP sequence (100 ms/shape + 100-ms ISI) followed by a
two-alternative forced-choice (2-AFC) membership test. (a) Experiment
3. One change/stimulus from the possible three: general rotation, local
point rotation, local radius change (IR increase or OR decrease). (b)
Experiment 4. Descendants created only by local radius changes (IR

increase or OR decrease). (c) Experiment 5. Symmetric changes for each
two descendants included in the RSVP sequence, so that the sequence
mean equals the ancestor base. Only local radius changes (IR increase/
decrease; OR increase/decrease). In Experiment 5, trials where the ances-
tor was a sequencemember, RSVP had nine stimuli; where not a member,
RSVP had eight stimuli
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accuracy as a function of the relative distance of the test im-
ages from the ancestor, as reflected in the mean or base shape,
like the plots in Fig. 3c and d for low-level features and cate-
gory typicality.

The procedures were identical to those of Experiment 3,
creating descendants by introducing only one change from
the ancestor. The only difference was that here the change
was only in the outer or inner radius of some of the star
points, (again changing p/2 points for even p and (p+1)/2
for odd p). Each varied point of the star-like shape was
increased in inner radius and/or decreased in outer radius.
The change could be small or large for each; outer radius

could be 1, 0.8, 0.6 of base, and inner radius could be 1,
1.25, 1.5 of base (excluding, of course, the case where both
are 1.0, which is the base itself).

Results

The basic ancestor and range effects seen for Experiments
1 , 2 and 3 were found here, too, as shown in Fig. 11.
Judging by either base or mean, perception and memory
of the ancestor is superior to that of descendant shapes
(RM-ANOVA: base: F(2,180) = 2.98, p < 0.001; mean
(F(2,180) = 54.08, p < 0.001). Participants were only
slightly and insignificantly better at recognizing the base
(0.57 ± 0.01; t-test: p = 0.15, Fig. 11a, light blue bar), but
highly significantly in recognizing the mean (0.62 ±
0.014; t-test: p < 0.001, dark blue bar) rather than another
image (baseline: 0.55 ± 0.012, green) in membership
judgments. Similarly, they chose this base even when not
included in the sequence slightly below the baseline (0.53 ±
0.014; t-test: p = 0.068, pink bar), and the mean significantly
below the baseline (0.41 ± 0.013; t-test: p < 0.001, red). In
addition, when the NEW shape was from another ancestor, it
was easily rejected (F(1,90) = 35.43; p < 0.001), so that per-
formance was: 0.67 ± 0.016; p < 0.001, grey bar. In addition,
RTs are shown in Fig. 11b. Incorrect choices are generally
slower than correct choices with the one exception of choos-
ing NEW = mean (t-test RT mean effect p < 0.01). Unlike in
Experiment 3, here the relative ancestor effect was more ro-
bust for the mean (mean: 0.21 ± 0.02, t-test p < 0.001; base:
0.04 ± 0.01, t-test p < 0.05), reflecting the more robust effect
of choosing the mean (t-test SEEN = base minus NEW = base
vs. SEEN = mean minus NEW = mean, p < 0.001).

To evaluate the graded base and mean effects, the relative
distance of test descendants from the ancestor base or ensem-
ble mean, we calculated the sum of distances from the base
or mean in all inner and outer radii for both the NEW and
the SEEN test shape. We then subtracted the difference of
the SEEN to the base or mean from the difference of the

Fig. 9 Experiment 3. (a) Accuracy of membership task performance for
the different trial subtypes, illustrating implicit statistical effects of mean
(dark blue-red bars), base (light blue-pink bars) and range effect (green-

grey bars). (b) Correct and Incorrect reaction times (RTs) for each sub-
type illustrating no speed-accuracy trade-off (green=correct choices,
red=incorrect choices)

Fig. 10 Relative contribution of each feature modification to mean and
base effects. The contributions were evaluated by a measurement of both
mean and base effects (subtraction of trials wherein mean/base were
SEEN shapes from trials where mean/base were NEW shapes in the
two-alternative forced-choice (2-AFC) membership tasks). These effects
were calculated separately for each feature modification of the NEW and
SEEN shapes and plotted here
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NEW from the base or mean. Thus, negative values indicate
that the NEW was more similar to the base or mean relative
to the SEEN, and vice versa for positive values (x-axes of
Fig. 11c and d). This measure, adopted from previous stud-
ies (Khayat & Hochstein, 2018, 2019a; see Fig. 3), enabled
us to investigate base or mean perception at a higher reso-
lution, testing not only the response when either SEEN or
NEW stimulus is precisely the base or mean, but how will
participants respond in the membership task when neither
test image is the base or mean, but one of the two alterna-
tives is closer to the mean than the other. We find that
performance was elevated gradually as a function of resem-
blance of the SEEN shape to the base (Fig. 11c) or mean
(Fig. 11d) relative to the NEW shape resemblance to the
base or mean (Pearson correlation – base: r = 0.293, p <
0.05; mean: r = 0.697, p < 0.001).

Limiting the ancestor-to-descendant change to changes
in outer and inner radius, and having two levels of change
for each, allows us to measure the influence of relative
distance from the base or mean of the SEEN versus NEW
test element. When the SEEN test element is the base or
mean, the relative distance is just the distance of the NEW
element from the base or mean (light and dark blue points in
Fig. 11c and d, respectively), and when the NEW test ele-
ment is the base or mean, the relative distance is just the
distance of the SEEN element from the base or mean (pink
and red points in Fig. 11c and d, respectively). When

neither is the base or mean, and both derive from the same
ancestor (green points in Fig. 11c and d), we have the mid-
range points, which together form the baseline result
(SEEN and NEW both descendants).

Experiment 5. Sets of star-like amoeba
shapes – mean = base = ancestor

Procedures were the same as in Experiment 4 except that here
we made sure that the mean value of the RSVP sequence
elements was equal to the ancestor star-amoeba shape. As in
Experiment 4, each shape stimulus varied from the ancestor
base in increased or decreased inner and/or outer radius, but
here the changes could be in both directions, and the differ-
ence in one ensemble stimulus was balanced by using the
opposite difference in another stimulus. The changes were
thus symmetric, leading to the ensemble mean being equal
to the ancestor base. The change in radii (for p/2 points for
even p and (p+1)/2 for odd p) were as follows: outer radius
1.4, 1.2, 1, 0.8, 0.6 times base; inner radius 0.5, 0.75, 1, 1.25,
1.5 times base. To maintain the ancestor as the mean of each
RSVP trial, when the ancestor was a member of the sequence
(SEEN), the RSVP included nine shape stimuli (ancestor +
four pairs of descendants). When the ancestor was not a mem-
ber, RSVP included eight shape stimuli (four pairs of
descendants).

Fig. 11 Experiment 4. (a) Accuracy of membership task performance for
different trial subtypes, illustrating implicit statistical effects of mean
(dark blue-red bars), base (light blue-pink), and range effect (grey) com-
pared to baseline (dark green). (b) Reaction times (RTs) for trials with
correct (light green) and incorrect (red) responses for each subtype illus-
trating lack of speed-accuracy trade-off. (c) Graded base effect. (d)

Graded mean effect. X-axis in C and D is calculated difference between
distances of the two test shapes from base or mean, respectively. Negative
values represent trials where NEW is closer to mean or base, positive
values where SEEN is more like mean or base. Dot colors represent trial
subtypes as in (a)
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Results

The ancestor (mean and base) and range effects seen for
previous Experiments 1–4 were measured here, as shown
in Fig. 12. Implicit perception and memory of the ancestor
shape was highly significant (RM-ANOVA: F(2,398) =
185.667, p < 0.001). Participants tended to select the ances-
tor whether it was a SEEN (0.63 ± 0.009, Fig. 12a, blue bar)
or a NEW (0.42 ± 0.006, red) shape rather than another
shape (0.48 ± 0.004, baseline, green) in membership judg-
ments (t-test for both: p < 0.001). This bias was also
reflected by the robust ancestor effect (SEEN = ancestor
minus NEW = ancestor: 0.63–0.42 = 0.21 ± 0.01). When
the NEW shape was from another ancestor, it was easily
rejected (F(1,199) = 260.286, p < 0.001), resulting in high
performance (0.7 ± 0.011; t-test: p < 0.001, grey bar).

Figure 12b shows reaction time results. As expected, cor-
rect (green) responses are generally faster than incorrect re-
sponses (red). This trend is reversed for trials where the NEW
shape is the ancestor (t-test p < 0.01; t-test RT mean/base
effect p < 0.001). It is also seen for baseline trials, but not
significantly so. RT results show there is no speed-accuracy
trade-off.

Graded ancestor effect, shown in Fig. 12c, was evaluated
using the same methods as in Fig. 3c and d (Khayat &
Hochstein, 2018, 2019a) and Experiment 4 (Fig. 11c and d).

This bias to the shape that is closer to the ancestor confirms
our prediction regarding the relative and graded ancestor ef-
fect, suggesting that the implicit perception is not to the exact
ancestor shape, but it is impacted by relative resemblance. In
addition, the finding that when presented with two test images,
participants intuitively choose the image with lower distance
from the ancestor, is consistent with the suggestion that im-
ages are represented as ancestor plus distance from the ances-
tor. This is consistent with the model of Benna and Fusi
(2019), suggesting that we efficiently perceive and store new
objects in memory using a compressed representation – by
encoding only the difference from the known ancestor object.

Discussion

Summary

The threefold goal of these experiments was achieved:

1 We had found that mean perception is automatic, implicit,
and on-the-fly for low-level stimulus parameters (size,
orientation, brightness; Khayat & Hochstein, 2018). We
had also found the same prototype effect phenomenon
for categorization (Khayat & Hochstein, 2019a). Since
we had only tested well-known categories, acquired over

Fig. 12 Experiment 5. (a) Accuracy of membership task performance for
the different trial subtypes, illustrating implicit statistical effects of
ancestor (dark blue-red bars) and range effect (grey-green bars).
Difference is highly significant (p < 0.001) in both. (b) Correct (green)
and Incorrect (red) trial reaction times (RTs) for each subtype illustrating

no speed-accuracy trade-off, and a flip between speed of correct and
incorrect responses between trials of NEW = base and baseline to
SEEN = base and NEW = out. (c) Graded ancestor effect: X-axis as in
Fig. 11c and d; dot colors represent trial subtypes as in (a)
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a lifetime (e.g., animals, food, furniture) we wished to
bridge these findings by testing for the mean effect for
novel categories that could be acquired on-the-fly on a
trial-by-trial basis. The amoeba shapes presented an excel-
lent opportunity for this test. Participants indeed learned
and perceived the mean or ancestor of the set of amoeba
shapes on-the-fly for each trial and used this mean in
choosing which of two test images had been seen in the
RSVP sequence. This finding strengthens the implication
that a similar mechanism underlies mean perception and
categorization. While there are other potential causes of
this similarity, such as shared source of internal noise,
we believe the most parsimonious explanation is common
or analogous mechanisms.

2 For low-level mean perception, we could measure the grad-
ed effect of relative proximity of the two test images from
the mean. For categorization, this was more complex, and
we used results of an auxiliary experiment, where we mea-
sured category exemplar typicality (using RT when indicat-
ing category membership). We wished to use categories
where the distance from prototype – or base/mean – was
directly measurable. This was made possible by using grad-
ed changes from the ancestor star-amoeba shape. We found
graded dependences on relative distance from the mean or
base shape (Figs. 11 and 12), like those found for the low-
level mean effects (Fig. 3c) and that for known categories
(Fig. 3d). This finding widens the range of ensemble statis-
tics perception, and establishes a measure for the effect in
different scenarios. It confirms the methodology used for
measuring category exemplar typicality. It also further
strengthens the above suggestion of similar mechanisms
for ensemble perception and categorization.

3 Benna and Fusi (2019) suggested that memory capacity
can be increased by considering object correlations and
that efficient representation is by storing the identity of
the appropriate “ancestor” of each pattern, and the differ-
ence between it and each “descendant.” We wished to
determine if using stimulus patterns related in ancestor-
descendant fashion leads to automatic perception of the
ancestor pattern. We found that presenting sequences of
patterns leads to participants perceiving the mean/base/
ancestor of the sequence patterns, supporting the Benna
and Fusi (2019) theory. Note, however, that the ancestor
derived from the sequence was not necessarily the an-
cestor which we used to create the descendants. This is
because the derivation was ambiguous. The pattern
most often preferred by participants was just the mean
pattern – which could just as well (or better) have been
the ancestor. Significantly, choice of the test image that
is closer to the ancestor suggests that these test images,
too, are represented by their ancestor and the distance
from the ancestor, enabling the choice of the image clos-
er to the ancestor.

Together with the analogy or possible relationship of ensem-
ble statistics perception and categorization, the stimuli of the
experiments in the current study may be considered as interme-
diate level stimulus images, as they are constructed by integrating
multiple visual features. Ensemble statistics was shown to be
extracted from visual low-level (orientation, brightness) and
high-level features (face expression, biological motion) in many
studies. The neural correlates underlying these processes remain
vague. Though the Para-hippocampal Place Area (PPA) was
associated with such processes, as found by Cant and Xu
(2012, 2015, 2017), there is no differentiation of low- and
high-level ensemble processing. Moreover, the mechanism of
this unique processing is yet to be well understood, and a main
question to be investigated in future research is – how and where
are different ensembles processed? Is there a single domain spe-
cializing in that kind of statistical extractionwhich communicates
with specific regions that are selective to the relevant ensemble
features (e.g., V1 for line orientation, FFA for faces)?
Alternatively, does each perceptual region independently process
ensembles that fits its receptive field structure? These questions
need to be targeted to understand the strategy and nature of the
mechanisms underlying ensemble statistics perception.

Conclusion

On the fly categorization shows the same category/prototype
effects as low-level and categorization experiments, suggest-
ing similar mechanisms might underlie all three, and the jump
from low-level parameters to high-level cognitive/semantic
categorization is warranted.

Thus, mean perception is found for four perceptual levels:
low level (size, orientation, brightness), high level (faces,
numbers, lifelikeness), shape categories (star-like, amoebas),
familiar categories (fruit, cars, animals). Finding identical
properties at all these perceptual levels suggests that the sim-
ilar mechanisms might be used at all perceptual levels.

Benna and Fusi (2019) suggest individual images might be
represented as ancestor plus difference-from-ancestor. Thus,
in this view, perceiving the mean/prototype/base is not an
additional computation performed by the sensory system for
the special purpose of averaging or categorizing groups, but is
inherent in the process of building the representation of im-
ages in the first place.
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Appendix

Violin Plots

We present violin figures for the data of Experiments 1–5 with
each participant’s result for each subtype (dots), interquartile
range (light bars) and the median result (thick horizontal bar).
Compare Figs. 5, 7, 9, 11, and 12, which show the average
accuracy over participants.
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