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1 Introduction and Scope

The human visual system can only access detailed representations of a fraction of

information in each glance, with the heuristic limit of about four items. This raises

the questions of what happens to the remaining majority of visual input, and why

we nonetheless have the illusion of stable and complete perception? Ensemble

representations are rapidly extracted statistical summaries of sets of similar items.

For example, without individuating leaves in Figure 1a, an immediate impression

of Summer versus Autumn is given by average hue. Similarly, it is not necessary

to encode individual trees in Figure 1b to understand one forest has grown

naturally and one has been planted based on variance in size and position.

1.1 Brief History

In vision science, ensemble encoding is synonymous with summary statistical

representation, or encoding sets of objects in terms of statistical descriptors versus

detailed individual representations. Although multiple statistical properties of

ensembles can be represented, the majority of investigations to date have been

concerned with mean representations, often termed “perceptual averaging.”

Importantly, “ensemble” has different meaning in these contexts than in mathem-

atics and machine learning, where ensemble methods involve evaluatingmultiple

models to maximize prediction accuracy. The term ensemble in vision science

was likely inherited from the texture perception literature, referring to a collection

of items in which each part is only considered with respect to the whole.

Ariely (2001) popularized ensemble encoding with a foundational demon-

stration that although observers were at chance to determine whether a circle

presented after a set of circles was a member of the set, they were surprisingly

accurate at discriminating whether it was larger than the average size of the set.

Since then, a number of tasks have been developed to characterize ensemble

perception either by explicitly measuring mean representation or by implicitly

probing the effect of task-irrelevant mean information on performance

(Figure 2). Yet, phenomena of central tendency were long before central topics

in perception. Representing parts with respect to wholes is a major tenet

underlying Gestalt principles (Wertheimer, 1923). Even before the formaliza-

tion of Gestalt laws, the idea that “the whole is more than the sum of its parts,”

was deeply rooted in empirical studies of number perception. Messenger (1903)

reported observers were poor at discriminating how many objects comprised

a set of radially arranged lines but became more accurate after drawing the

stimulus frommemory, suggesting elements were encoded relative to the whole

set. Similarly, the idea that perception “regresses toward the mean” is evident in

early empirical studies of human information processing. Hollingworth (1910)

1The Pervasiveness of Ensemble Perception
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ba

Figure 1 (a) Differences in average hue allow for rapid perception of different

seasons in Summer (top) and Autumn (bottom) leaves. (b) Lower size and

position variance allow for quick discrimination between natural (top) and

human-made (bottom) forests.

Which was the mean of the set? c

Adjust to the mean of the set.e

Which side has the larger
average? 

g

Explicit Implicit

a
Was this size a member of the set? 

Was this size the mean of the set? 
vs

Which appears larger? h

Adjust to the remembered size
of a circle.

f

Which was present in the set? d

Was this present in the set? b

Figure 2 Typical explicit (left) and implicit (right) tasks used to investigate

ensemble perception. (a) Observers can explicitly determine whether a test

represents the set mean but not whether it was a member of the set, and (b) show

implicit bias to incorrectly choose circles closer to the mean as set members.

(c) Observers can explicitly determine which test was the set mean, but (d) are

implicitly biased toward incorrectly selecting the mean as a member present in

the set. (e) Observers can explicitly adjust a test to the mean, but (f ) adjustments

for set members are implicitly biased toward the mean. (g) Observers can

explicitly determine which side has the larger mean, but (h) after adapting to

two sets with different means, perceptions of physically identical tests are

implicitly biased as an inverse function of the mean.

2 Perception
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presented observers with a square for approximately five seconds, then asked

them to choose which of several squares matched its size. He noted the

“indifference point” or mean value around which estimates tended to gravitate.

Attneave (1954) proposed the visual system behaves like an intuitive statisti-

cian, averaging out redundancy and retaining abstract statistical regularities.

Along these lines, Barlow (1961) noted early visual neurons extract signals of

high relative entropy out of largely redundant visual input, emphasizing the

unusual by summarizing regularities. See Bauer (2015) for a comprehensive

review of “pre-Ariely” studies.

1.2 Themes and Outline

Over the course of summarizing what has been uncovered about ensemble

representation, we will develop the following themes in this Element. In

Section 2, we aim to provide succinct descriptions of fundamental results

that are often overgeneralized to aid in the interpretation of existing literature

and guide the development of future investigations. In Section 3, we review

several theoretical questions regarding ensemble encoding and propose it is

best understood in terms of Reverse Hierarchy Theory (RHT; Hochstein &

Ahissar, 2002). This is followed in Section 4 by a discussion of the corres-

ponding computational and neural substrates of ensemble encoding. In con-

trast to leading views, we propose in Section 5 that ensemble encoding does

not supplement focused attentional processing, but instead is a more funda-

mental process. We point out how perception is reliant on ensemble summar-

ies without the need to retrieve noisy individual representations when

processing capacity is exceeded, but not at the expense of fidelity when details

can be recovered via focused attention with minimal corruption. Our over-

arching conclusion is that ensemble perception is the basis of a qualitatively

different, intelligent form of representation and the starting point of conscious

perception giving rise to our remarkable abilities to organize huge chunks of

sensory information and maintain a holistic “big picture” with the illusion of

detail.

2 What Is Summarized?

Before turning to advanced discussions, it is important to review foundational

studies of the spatial, temporal, multimodal, and statistical properties of ensem-

ble representations. While the seasoned reader may opt to skip to later sections,

here we provide expert and novice readers alike with sufficient detail to properly

interpret the implications of seminal works and to optimize the design of future

studies of ensemble encoding.

3The Pervasiveness of Ensemble Perception
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2.1 Features

So far, it seems anything can be summarized in an ensemble representation. In

fact, there has never been an empirical demonstration that summary representa-

tions can be prevented. Here we discuss an abbreviated list of fundamental

demonstrations of ensemble encoding over an array of features.

2.1.1 Size

Ariely’s (2001) investigation launched the now-popular proposal that sets of

objects can be represented in a qualitatively different manner than individual

objects. Subsequent studies by Chong and Treisman demonstrated observers

could discriminate which of two sets of heterogeneously sized circles had the

larger average size with similar precision as they could determine which of two

displays of homogeneous circles or which of two single circles was larger, and

average estimates were unaffected by display duration (2003), density, or set

size (2005a). However, it is important to note here and in many studies

discussed throughout this work that only four unique sizes were used in their

displays. Therefore, observers may have relied on individual representations of

the unique sizes without necessitating a specialized averaging process. These

findings do align with earlier reports that estimates of average length and tilt of

sets of six lines followed Stevens’ Power Law, with one-to-one relationships

between physical and perceived properties (Miller & Sheldon, 1969; Miller

et al., 1970; Weiss & Anderson, 1969).

2.1.2 Orientation

Foundational work in texture perception has also noted the visual system’s basic

ability to average orientations. Dakin and colleagues (Dakin, 1997; Dakin &

Watt, 1997) presented the first empirical evidence that observers were able to

discriminate the mean orientation of sets of 512 elements and parse the mean

orientations of subsets of 64 element displays with similar precision as reported

for single orientation discriminations.

2.1.3 Speed/Direction of Motion

Williams and Sekuler (1984) first noted global coherent motion was perceived

in the direction of the mean trajectory of random dot kinematograms.

Watamaniuk and colleagues (1989) then demonstrated mean direction is per-

ceived without regard for individual dot paths, and discrimination thresholds for

dots moving at different speeds were similar to thresholds for dots moving at the

same speed (Watamaniuk & Duchon (1992).

4 Perception
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2.1.4 Brightness

Bauer (2009) reported Stevens’ Power Law extended to average brightness with

displays of sixteen circles with four unique luminances. Takano and Kimura

(2020) recently reported discriminations of the average brightness of six to twelve

discs were as or more precise than discriminations of individual disc brightness.

2.1.5 Color

When briefly presented with eight squares, half in one hue and half in a different

hue, observers were more likely to incorrectly select a square matching the

mean hue as being present versus a hue that was present (Maule et al., 2014).

These findings corroborate Olkkonen and colleagues’ (2014) report that obser-

vers’ perceptions of individual hues in a delayed estimation task were biased

toward the set mean, as well as Webster and colleagues (2014) findings that

observers could accurately estimate the average hue of 121 elements with half

presented in one hue and the other half presented in a second hue.

2.1.6 Location

Using a multiple object tracking task with an attended set of four identical targets

and an unattended set of four different identical targets, Alvarez and Oliva (2008)

found not only were participants more accurate at indicating the centroid location

of the attended set versus the location of an individual attended object, but they

also encoded the mean versus individual locations of the unattended set. Lew and

Vul (2013) subsequently found observers recalled individual locations more

accurately when two to eight objects were densely clustered versus individually

distributed, and judgments had lower absolute errors relative to the centroid

location of the entire cluster versus individual item locations (Lew & Vul, 2015).

2.1.7 Numerosity

Solomon and Morgan (2018) presented observers with two displays of four or

eight “sectors,” each occupied by zero to four items, and asked them to judge

which display contained the larger average numerosity. Judgments were similar

for displays when items occupied both equal and unequal numbers of sectors,

suggesting calculations of average versus total numerosity.

2.1.8 Numeric Value

Corbett and colleagues (2006) first demonstrated rapid extraction of a higher-

order, meaningful stimulus property, average numeric value. Observers viewed

5The Pervasiveness of Ensemble Perception
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two briefly presented displays of mixtures of six block 2’s and 5’s (digits

condition), p’s and q’s (letters condition), and displays rotated by 90° (sideways

digits and sideways letters conditions), and judged which display had the larger

average value (digits), more of a given target letter (letters) or target shape

(sideways conditions). Digit judgments were significantly faster and more

accurate, suggesting observers rapidly extracted average numeric value when

it was meaningful in digits displays in a qualitatively different manner than

when evaluating which meaningful letter display or which nonmeaningful

rotated displays contained more of a given target. Later studies by Brezis and

colleagues confirmed averaging of large sequences of two-digit numbers (2015,

2016, 2018).

2.1.9 Faces

Haberman and Whitney (2007) demonstrated perceptual averaging of meaning-

ful, high-level face stimuli. Observers determined whether a test face was

happier than a set of four faces with different emotional expressions about as

accurately as they determined whether the test was happier than a set of

homogeneous-expression faces, but could not determine which of two faces

was a member of a set of four different-expression faces. Results replicated for

average gender, and held over displays of upright but not inverted or scrambled

faces with larger set sizes (8, 12, and 16 faces comprised four unique faces),

regardless of poor location memory for individual members and whether sets

were displayed for 50 ms or 2 s (Haberman & Whitney, 2009). De Fockert and

Wolfenstein (2009) also reported observers were more likely to incorrectly select

the mean identity of a set of four unfamiliar faces as present versus an individual

identity that was present. This finding was later replicated for sets of four familiar

famous faces (Neumann et al., 2013), and four exemplars of the same celebrity

regardless of simultaneous or sequential presentation (Kramer et al., 2015).

2.1.10 Biological Factors

Sweeny and Whitney (2014) reported observers were able to accurately esti-

mate the average perceived eye gaze direction of sets of up to four faces

regardless of whether sets were presented for 200 or 1000 ms. This effect

attenuated with inverted faces, suggesting both low-level features and higher-

level configural information are statistically summarized. Observers were also

able to accurately estimate the heading of a crowd of two to twelve point-light-

walkers with unique individual trajectories, with precision increasing as

a function of set size (Sweeny et al., 2013). Yamanashi Leib and colleagues

(2016) reported observers were able to accurately estimate the average animacy

6 Perception
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of a set of six objects when the entire set was briefly presented and when

individual objects were presented in succession.

2.1.11 Category

Khayat and Hochstein (2019) presented observers with Rapid Serial Visual

Presentation (RSVP) displays of nine or twelve objects from the same category

(e.g., mammals) and asked them to choose which of two tests were present.

Observers were faster and more accurate to choose the prototypical test over

a nonprototypical test or a different category test. Findings also extended to

novel “amoeba” shapes (Khayat et al., 2021).

2.1.12 Economic Value

A recent study by Yamanashi Leib and colleagues (2020) showed observers

made fairly accurate average price estimates of sets of up to six different retail

products (e.g., microwave, backpack, shoe, lamp, bowl, t-shirt).

2.1.13 Temporal

Kanaya and colleagues (2018) reported mean frequency estimates for sets of up to

fourteen different frequencies were biased toward the most salient (highest) fre-

quency (see Section 3.3.3), in line with previous reports of temporal distortion

induced by rhythmic timing (Johnston et al., 2006). Furthermore, observers per-

ceived the duration of a test dot as an inverse function of the average dot duration of

a stream of eleven different-duration adapting dots, suggesting average duration is

encoded as a fundamental property of visual information (Corbett et al., 2021).

These findings converge to suggest ensemble encoding is ubiquitous in visual

information processing, with automatic averaging of a large variety of low- and

high-level features. Although truly categorical variables (e.g., apples and

oranges) are inherently unavailable to averaging, ensemble encoding is so perva-

sive that perhaps all features can be summarized in an exemplar form.

2.2 Modalities

2.2.1 Auditory

Ensemble representation is not limited to visual features. In fact, Albrecht and

colleagues (2012) demonstrated when participants viewed sequences of serially

presented eight circles with different sizes and/or heard sequences of eight

serially presented tones with different pitches and were tasked either to adjust

a subsequent tone to the average pitch or a circle to the average size, adjustments

were significantly more accurate for average tone than size regardless of whether

7The Pervasiveness of Ensemble Perception
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circles and tones were presented simultaneously. Along these lines, listeners were

remarkably accurate when presented with six tones in sequence and asked to

determine whether the mean frequency was higher than a test tone but unable to

discriminate whether the mean or a foil was present in the set or an individual

tone’s sequence in the set (Piazza et al., 2013). Schweickert and colleagues (2014)

reported similar findings for tone durationwhen listenerswere presented with sets

of forty tones sampled from different durations and asked to determine whether

a comparison tone was longer than the set average. McDermott and colleagues

(2013) presented listeners with three different auditory textures (e.g., stream,

insects, fire) and asked them to determine which sound was generated from

a distinct source. Performance improved as texture duration increased with two

exemplars from one texture and one exemplar from a different texture, but

declined with increasing duration with two identical exemplars and a third

exemplar from a different excerpt of the same texture (identical long-term statis-

tics, with different temporal details in the unique texture). Collectively, results

suggest temporal details are summarized using time-averaged statistics which

converge for the same sounds over increasing durations.

2.2.2 Perception and Action

Investigations of ensemble encoding in perception and action have so far yielded

mixed results. When Corbett and Song (2014) adapted observers to two arrays of

fourteen differently sized circles, they perceived a test circle as larger when pre-

sented in the region adapted to the smaller versus larger mean size (a negative

adaptation aftereffect; AAE). However, when observers were asked to grasp the 2D

test circle, actions were initially biased in line with the perceptual aftereffect but

corrected over the course of the action. In a later study by Fan and colleagues (2021)

using veridical 3D haptic feedback, manual estimations of the size or orientation of

a 3D cylindrical target surrounded by elliptical and cylindrical objects were biased

by both the mean orientation and mean size of the entire display, but peak grasping

apertures to the 3D target were not. Similarly, when presented with a single target

and asked to adjust a line to estimate its size or reach to grasp it, estimates were

biased toward themost frequently presented size over subsequent trials but peak grip

apertures were not influenced regardless of visual feedback (Hamidi et al., 2021).

2.3 Timing

In addition to representing sets of objects arranged in space, several studies have

investigated how ensembles are encoded over time. Such investigations have

measured the temporal dynamics of simultaneously presented displays, as well

as ensemble encoding of sequentially presented individual items.

8 Perception
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2.3.1 Timescale of Simultaneous Encoding

Whereas early findings suggested ensemble encoding happens almost instantan-

eously, there is mounting evidence this process occurs over a slightly longer time

scale. Chong and Treisman (2003) first reported observers could discriminate

which of two side-by-side displays of twelve circles (four unique sizes) had the

larger average size with presentation durations as fast as 50 ms. In line with these

findings, Li and colleagues (2016) presented observers with sets of four faces for

50 ms, 500 ms, 1,000 ms, 1,500 ms, or 2,000 ms and asked them to judge whether

a subsequently presented test face was a member of the set or more neutral than

the set mean. Mean discriminations were similarly accurate across exposure

durations for homogeneous and heterogeneous sets, whereas longer exposure

times were needed for accurate member discriminations. Together, results sug-

gested averages, but not individual representations, can be extracted as quickly as

50 ms. However, Whiting and Oriet (2011) demonstrated when displays are

immediately masked to delimit processing, durations of at least 200 ms were

necessary for comparably accurate mean size discriminations. Similarly, when

successively presented with two random dot kinematograms, the difference in

global motion necessary for observers to discriminate whether the global motion

of the second stimulus was left or right of the global motion asymptoted around

465 ms (Watamaniuk & Sekuler, 1992). Results collectively imply ensemble

representations are rapidly extracted within a temporal integration window of at

least 200 ms. Given considerable methodological variance, this window likely

depends on multiple factors, including feature(s), task, and temporal dynamics.

2.3.2 Over Time

In addition to investigating the temporal dynamics of simultaneously presented

ensembles, a number of studies have measured ensemble encoding over suc-

cessively presented items. Chong and Treisman (2005a) presented observers

with a sequence of eight circles (four unique sizes), each for 250 ms, and found

a difference of about 22 percent was necessary to discriminate which of two

probes corresponded to the mean size, but a difference of approximately

45 percent was necessary to determine which probe corresponded to given set

member. Haberman and colleagues (2009) presented observers with sets of four

to twenty faces (four unique faces) at different temporal frequencies and asked

them either to judge whether a test face was more disgusted than the average

expression or to adjust a face to the average expression. Based on decay

function fits to performance over durations, sets needed to be presented for

approximately 800 ms to reach 63 percent of an asymptotic performance

threshold. Inaccurate temporal order judgments for single faces were taken as
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evidence that individual faces were not reliably encoded, yet item order cannot

usually be retained from RSVP sequences (e.g., Hommel & Akyürek, 2005).

Therefore, observers in both studies may have responded based on individual

representations. Corbett and Oriet (2011) first demonstrated size averaging over

RSVP displays of five to eleven uniquely sized circles. These findings were later

replicated using larger set sizes of all or mostly unique objects for average size,

orientation, and brightness (Khayat & Hochstein, 2018), identity (Yamanashi-

Leib et al., 2014), animacy (Yamanashi Leib, 2016), and familiar (Khayat &

Hochstein, 2019) and novel (Khayat et al., 2021) object categories.

Although ensembles are clearly represented over time, it is less understood

whether all items contribute equally. When Weiss and Anderson (1969) pre-

sented observers with a sequence of six lines with different lengths, each for 4

s with a 2 s Inter-stimulus interval (ISI), then asked them to adjust a test line to

the mean length, adjustments were biased toward later lengths. Albrecht and

Scholl (2010) found a similar recency bias in mean size adjustments when

observers were presented with one disc that size-morphed over 720 ms and

remained in the same spatial position, moved randomly through nine anchor

points, or a set of eight discs that remained in the same spatial locations but size-

morphed over 1.2 s. When the disc changed at a linear rate, estimates reflected

overall mean size, but when half of the transformation happened five times

faster, adjustments were biased toward the size in the longer half. Average

estimates were also influenced more by expanding versus contracting portions

of the sequence. Tong and colleagues (2019) also reported a recency effect for

the average length of a one-second series of individually presented lines and to

a lesser extent the running average of a sequence of numerals, suggesting

recency bias varies over different features. Somewhat to the contrary, Hubert-

Wallander and Boynton (2015) reported although mean size, facial expression,

and direction of motion exhibited recency effects, the average location of

a stream of serially presented objects was biased toward earlier items. This

primacy bias is similar to later findings by Crawford and colleagues (2019) that

observers’ current average of four squares or emotional faces simultaneously

presented for 1 s were biased toward the mean value of the previous display.

When presented with a disc that continuously changed size at different rates and

asked to adjust a test to match the mean size, Attarha and colleagues (2016)

reported observers’ estimates were fairly constant and accurate for durations up

to about 600 ms, pointing to a limited temporal window for integration with all

items contributing equally, such that representations are not continuously but

rather periodically updated.

Collectively, findings demonstrate ensemble representations are accrued over

both time and space, and further suggest ensemble encoding may be modulated
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by the temporal saliency of individual items. As discussed further in

Section 5.4, periodically updating summary representations of the dynamic

surrounding environment may provide a critical mechanism to mediate between

the needs to perceive salient changes while maintaining the impression of

stable, complete perception.

2.4 Statistical Descriptors

Although the ability to extract average features from a set of multiple objects is

a signature phenomenon of ensemble perception, computation of summary

statistics is not limited to the mean. In other words, the representation of a set

is not compressed into a single representative magnitude, but instead into an

ensemble of useful statistical descriptors.

2.4.1 Numerosity

Numerosity, an immediate approximation of quantity without counting, is

another statistical property extracted in parallel over a set of objects

(Chong & Evans, 2011). Although the number of discrete objects is differ-

ent from an average feature, some authors suggest the actual visual prop-

erty underlying numerosity is relative texture density (e.g., Durgin, 1995,

2008; Section 2.5.3). However, others argue numerosity is more than just

texture density (Burr & Ross, 2008) reliant upon an independent neural

substrate. In any case, numerosity perception shares critical properties of

ensemble summary statistics in that it is an approximate, gist-based repre-

sentation that can be rapidly accessed.

2.4.2 Variability

Sensitivity to set variance or range has been documented using paradigms

similar to those outlined for averaging tasks over various domains, such as

orientation (e.g., Lau & Brady, 2018; Tokita et al., 2016), brightness (Khayat &

Hochstein, 2018) facial expression (Haberman et al., 2015). Solomon and

colleagues (Morgan et al., 2008; Solomon, 2010) parametrically estimated

sensitivity to orientation variance in a 2IFC task with displays of 121 gratings

presented for 200 ms, separated by 200 ms blanks. Thresholds for determining

which display had the greater variance were best described as “dipper function,”

which steadily increased with absolute variance over a broad range of physical

variances, except for very small variances (up to 4–5°). Within this narrow

range, discrimination thresholds instead decreased as variance increased, sug-

gesting a threshold below which all variance is discounted as internal noise.

11The Pervasiveness of Ensemble Perception
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Variance and range also modulate the quality of average representations. The

greater the variance, the more uncertain observers were about their judgments of

average ensemble features (e.g., Corbett et al., 2012; Dakin, 2001; Im &

Halberda, 2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014).

Nonetheless, Hochstein and colleagues (2018) reported the mean orientations

of two arrays of heterogeneously oriented bars were able to be compared even

when ranges overlapped considerably, suggesting variability is an estimate of

the external noise in the average representation. However, variability estimation

has been demonstrated to transfer from a set with one average feature to a set

with a different average feature (Haberman et al., 2015; Khvostov & Utochkin,

2019), suggesting relative independence between these two types of ensemble

summaries (Section 3.1).

2.4.3 Distribution

The richness of ensemble representation also extends beyond basic summaries. In

a series of experiments, Chetverikov and colleagues (2016, 2017a–c, 2019)

demonstrated the entire feature distribution implicitly affects behavior.

Participants searched for a feature-singleton among a large set of distractors. In

streaks of 3–6 consecutive trials, distractors were drawn from the same distribu-

tion. Following the streak, the distractor distribution and target changed locations

in feature space, such that the target could be one of the features within the former

distractor distribution. This target-distractor reversal slowed search in a manner

that correlated with the probability density of the probed feature in the previous

distractor distribution, suggesting observers somehow learned the distractor

distributions which negatively primed subsequent search. However, later work

suggests only basic summary statistics (e.g., mean and variance) are consciously

accessible, whereas observers cannot explicitly discriminate distractor sets with

differently shaped distributions (Hansmann-Roth et al., 2021). Yet, Oriet and

Hozempa (2016) showed observers can explicitly learn rich distributional prop-

erties from extended practice with a consistent feature distribution. Along these

lines, Kim and Chong (2020) demonstrated observers rely on the whole feature

distribution even when reporting only basic summary statistics, such that they

tended to report the mean size of a sample set more precisely when other

distributional properties of a test set matched those of the sample.

Ensemble representations are clearly not restricted to average properties but

contain a rich array of descriptive information. Evidence discussed in the next

section further suggests these properties are encoded as fundamental perceptual

dimensions, directly accessed from ensembles versus built from individual parts

using “vision-with-scrutiny.”
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2.5 Fundamental Nature

Implicit effects and lack of conscious awareness associated with ensemble

representations raise the question of whether such representations are perceptual

in nature. Are ensemble statistics immediately experienced as fundamental set

properties, or inferred more “cognitively,” based on single feature dimensions.

Strong evidence for the perceptual nature of ensemble statistical representa-

tions comes from studies of negative AAEs. As described in Section 2.2.2, after

adapting to a given feature, perception of a test presented in the adapted region

is biased in the opposite direction. Adaptation aftereffects (AAEs) are inter-

preted as evidence of basic perceptual encoding accomplished by a single

mechanism comprised of independent units selectively sensitive over

a limited range, such that units responsible for encoding one extreme become

fatigued and the baseline response of units at the other extreme is falsely inflated

(e.g., Campbell & Robson, 1968).

2.5.1 Size

Corbett and colleagues (2012) reported a robust AAE of mean size using

adapting patches of fourteen dots on both sides from fixation with one patch

always having a larger mean size (e.g., Figure 2h). Following adaptation, two

test patches or dots were presented within the adapted regions. Observers’

discriminations of which test had the larger mean or individual size were biased

as an inverse function of the average size to which the region was adapted.

2.5.2 Variance

Norman and colleagues (2015) demonstrated an AAE to ensemble variance

using a similar design. Observers adapted to sets of Gabors with high and low

orientation variance, then determined which of two test patches had a higher

variance. The typical negative AAE bias was observed even when there was

little orientation similarity between adaptors and tests. However, Jeong and

Chong (2020) failed to replicate this effect with large mean differences between

adaptors and tests. Maule and Franklin (2020) reported transfer between fea-

tures, such that adapting to a highly variable ensemble of colors lead to the

underestimation of orientation variability.

2.5.3 Numerosity

Burr and Ross (2008) reported an exceptionally large numerosity AAE, with

perception biased as much as three-fold. Despite additional experiments to

dissociate numerosity effects from other variables such as area, density, and
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size (Burr & Ross, 2008), Durgin (2008) referred to earlier findings (Durgin,

1995, 2008; Durgin & Huk, 1997; Durgin & Proffitt, 1996) showing the

numerosity AAE decreased for displays of high band-pass elements, suggesting

properties like spatial frequency and density may better account for the

observed effects without necessitating a specialized numerosity mechanism.

2.5.4 Duration

Corbett and colleagues (2021; Section 2.1.13) reported a similar AAE for the

average duration of serially presented sets of items. Importantly, the finding that

average temporal aspects of visual information are also encoded as fundamental

properties provides a direct link between ensemble encoding in space and time.

Further such explorations of spatiotemporal properties of ensemble perception

are crucial to advance our understanding of how the limited capacity visual

system continuously mediates between the illusion of stable perception amidst

the chaos of the constantly changing retinal image (Section 5.4).

2.5.5 Development

In addition to evidence for the fundamental nature of ensemble encoding, such

processing abilities may develop over time like other forms of summary

representation (e.g., numerosity). For example, Zosh and colleagues (2011)

found nine-month-old infants detect a 1:2 change in numerosity of either of

two but not three intermingled groups of colored dots, suggesting ensemble

numerosity was perceived for two sets, and a change to the superset of all dots

was detected regardless of how many subsets were presented. Sweeny and

colleagues (2015) similarly tested ensemble perception in four-to-five-year-

old children by presenting them with drawings of trees with different size

oranges and asking them to help a monkey find which tree had larger oranges

overall. When comparing trees with eight oranges each (with four unique sizes),

performance was slightly poorer for children and nearly perfect for adults, but

when comparing trees with eight homogeneously sized oranges, accuracy was

much lower for children. Finally, when the two trees had different numbers of

oranges, accuracy for both groups was significantly better when the larger

oranges were on the tree with more fruit, but still above chance when the tree

with less fruit had the larger average size oranges. Although children’s abilities

to encode ensembles do develop somewhat over time, these findings demon-

strate the fundamental nature of ensemble encoding, similar to other basic

perceptual processes known to mature over time.

Overall, there is mounting evidence that ensemble properties are encoded funda-

mentally, as basic perceptual dimensions. Discussed further in Section 3, this
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fundamental nature suggests ensemble representations can be directly accessed, not

recovered from constituent item representations or by explicitly combining infor-

mation about the sum and total from lower-level stages of processing.

2.6 Limitations

Whereas ensemble representations are virtually unlimited in terms of what can

be summarized, such summaries may be subject to processing limitations. Here

we outline findings regarding whether multiple statistical summaries can be

computed at the same time and with the same quality.

2.6.1 Different Sets

We first consider studies of encoding a given summary statistic for different

subsets in the same display. Chong and Treisman (2005b) originally concluded

the means of two sets could be computed in parallel, without cost. They briefly

presented observers with displays of spatially intermixed sets of twelve green

and twelve red circles (in different ratios of two unique sizes). Discriminations

of which of two probe circles matched the average size of a given color set were

similar regardless of whether color was pre-cued, as well as when only one of

the color sets was presented. However, when Brand and colleagues (2012)

revisited these findings, they found participants could have chosen the correct

probe based on calculating the mean of the entire set. Using displays of all

uniquely sized circles instead resulted in a consistent detriment when color was

not pre-cued. These patterns of performance extended to higher-level features,

such as the average emotions of subsets of faces defined by sex, and probed with

test faces equidistant from the mean, eliminating the whole-set mean strategy.

Luo and Zhao (2018) reported a similar two-set-limit for pre-cue effects when

observers were presented with displays of up to eight sets of spatially inter-

mixed circles and adjusted a probe to match a given colors’ average size.

However, subsets only included four individual objects, such that individual

size may have been the delimiting factor. Together, results suggest observers

can compute the two subset means of a given feature, but at a cost relative to

computing the mean of the entire set or a single subset.

Oriet and Brand (2013) further demonstrated averaging over the entire set

cannot be prevented. First, observers were presented with displays of one or two

groups of six vertical lines of different lengths and one or two groups of six

horizontal lines of different lengths for 200 ms, and instructed to pay attention

only to one set, then indicate which side of the display had the larger average

length for that set. Next, participants again were instructed to only pay attention

to one set and given unlimited time to scrutinize displays and adjust the mean
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length of the relevant set on one side to match the mean size of that same set on

the opposite side. Regardless of whether displays were presented briefly or with

unlimited viewing time, estimates were affected by the mean size of the irrele-

vant set. Yildirim and colleagues (2018) provided converging evidence the

overall mean is represented automatically and more efficiently than multiple

subset means by demonstrating participants’ estimations of whole set means of

displays of two sets of eight circles were unaffected by pre-cues to represent the

entire set mean or one subset, whereas subset means benefited from pre-cuing.

Halberda and colleagues (2006) found similar results for numerosity using

displays of up to thirty-five dots. Observers could accurately report the numer-

osities of two spatially intermixed subsets without pre-cues, but a pre-cue

advantage emerged with three sets, and superset numerosity was represented

regardless of pre-cuing. Based on significant increases in incorrect reports of

a numerosity other than zero when more than two color subsets were present

and the numerosity of an unpresented set was probed, Poltoratski and Xu (2013)

proposed visual short-term memory (VSTM) capacity to represent about three

different colors was likely the delimiting factor.

Convergent evidence of limited capacity for encoding the same summary

statistic over multiple sets, and a superset advantage when encoding the same

statistic over subsets is given by a series of studies in which observers were

asked to calculate the averages of four sets of four objects each presented either

simultaneously or sequentially. If capacity is limited, performance for simul-

taneous versus sequential presentations or when all four sets are repeated

(effectively doubling processing time). Attarha and Moore (2014) found when

observers were presented with four sets of four Gabors and asked to report the

orientation of one patch that was tilted differently, accuracy was lower with

simultaneous versus sequential presentation and highest when sets were pre-

sented twice. This simultaneous disadvantage disappeared when all four

patches had homogeneous orientations and the task could be performed without

having to compute averages of individual subsets. Results replicated for average

size, with a superset advantage such that there was no difference in performance

between simultaneous and sequential presentations for discriminations of

whether a probe was larger than the mean size of the entire set of sixteen circles.

This superset advantage was confirmed for orientation averaging in

a subsequent study, with an additional demonstration that computing four

different averages of four different sets was capacity-limited relative to com-

paring four single sizes or four patches of homogeneous sizes (Attarha &

Moore, 2015a). Results collectively suggest a limited capacity for computing

summary statistics for multiple sets, with a cost in precision compared to

computing the same superset statistic.
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2.6.2 Different Feature Dimensions

Unlike convergent evidence for limited capacity to extract the same summary

statistic from multiple subsets, discrepant results have been reported from

studies where observers are tasked to represent multiple features of the same

set and different features from different sets in parallel.

Emmanouil and Treisman (2008) reported a cost for computing two different

features within the same set and within different sets. First, observers viewed

two sets of eight moving circles on either side of the display and discriminated

which side had the larger average size or the faster average speed. One side

contained circles with two fixed sizes and two fixed speeds in different propor-

tions. The other side contained two circles with each size and speed level, but

individual size and speed values varied to result in a difference of 6–36 percent

between the mean size or speed of the opposite side. When size was pre-cued,

participants needed a smaller difference between the two average sizes for

75 percent correct discriminations. However, there was no significant difference

in thresholds for pre-cued average speed discriminations. Next, a pre-cue

advantage for speed emerged with two sets of eight stationary circles and

eight moving X’s, such that size and speed were fixed to only one of two

spatially intermixed sets. Importantly, sets were further delimited by whether

they were moving, and there were twice as many sets and individual objects on

either side. Finally, with two stationary sets with different features (circles and

right-tilted lines) on either side, a pre-cue advantage was found for both size and

orientation. Collectively, results were taken as evidence of a cost for parallel

representation of one ensemble feature of one set and a different ensemble

feature of another set, despite potential methodological issues.

Using a similar design, Yörük and Boduroglu (2020) found no cost of divided

attention between average size and orientation of the same set. Observers viewed

sets of twelve lines, with unique lengths and orientations, and adjusted a probe to

match either the mean orientation or length. In a blocked design, the relevant

dimension was either pre-cued at the start of the block of trials, or post-cued with

an auditory cue after the set on each trial. Observers’ errors for average size and

orientation adjustments were not correlated in any condition, suggesting inde-

pendent summaries were constructed in parallel for both features of the same set.

Results from a study by Huang (2015) also point toward limited capacity for

parallel representation of multiple ensembles features. Observers viewed dis-

plays of either one red or green circle and one horizontal or vertical rectangle,

one colored circle and a patch of sixteen horizontal and vertical rectangles, one

oriented rectangle and sixteen red and green circles, or sixteen oriented rect-

angles and sixteen colored circles, then discriminated the horizontal/vertical
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orientation, red/green color, or the average orientation or color, respectively.

Responses were more accurate when color or orientation was pre-cued.

Findings were interpreted as evidence that encoding two different averages of

two different sets is as demanding as encoding two different features of two

single objects. However, as discussed further in Section 5.3, displays used

extreme stimuli that may have unintentionally caused observers to segregate

sets into red and green and horizontal and vertical, effectively increasing the

number of sets to be summarized.

Attarha and Moore (2015b) used a simultaneous-sequential paradigm to

examine whether different features could be averaged in parallel for different

sets and for the same set. When observers were presented with four sets of four

Gabors that varied in size and orientation, such that one set had a mean size that

differed from the other three sets and a different set had a mean orientation that

differed from the other three sets, they made significantly fewer correct

responses with simultaneous compared to sequential presentation. However,

when asked to discriminate only whether the overall average orientation was

left or right, the overall size was larger than a probe, or 4AFC regarding both

average size and orientation, they performed similarly regardless of whether

displays were presented simultaneously, sequentially, or twice. This superset

advantage suggests capacity limitations for summarizing two different dimen-

sions for each of four subsets relative to summarizing two different dimensions

extracted parallel from the same set.

Overall, results tend to support the proposal that different ensemble features

can be extracted from the same set in parallel, but there is limited capacity for

simultaneously extracting one ensemble feature from one set and a different

ensemble feature from another. Interestingly, Albrecht and colleagues (2012;

Section 2.2.1) found no cost for simultaneously representing the average sizes

of a set of circles and the average pitch of a sequence of tones. However, given

the overall superior performance for auditory averaging, it is possible visual and

auditory streams were represented separately even when presented simultan-

eously. Future studies using methods developed by Attarha and Moore (2015b)

and Yörük and Boduroglu (2020) may help to determine whether ensembles can

be represented in parallel over multiple modalities.

2.6.3 Multiple Descriptors

Ahandful of studies have considered how ensemble processing is carried out for

different types of summary descriptors (Section 2.4). For example, Utochkin

and Vostrikov (2017) found no cost for dividing attention between mean size

and numerosity of a set of seven to thirty-six circles with seven unique sizes.
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However, pre-cue advantages were observed when two spatially intermixed sets

defined by color (ten to thirty-six circles per set) were presented and observers

either adjusted a test to the mean size or entered an estimate of numerosity of

one set, and when they reported the mean size of one set and the numerosity of

the other within the same trial. Khvostov and Utochkin (2019) next used a dual-

task paradigm to examine dividing attention between mean size and numerosity

or mean size and variability. Observers either adjusted one statistical summary

of each set (a single test circle for the mean, or a test patch for the variance) or

two summaries concurrently. In all cases, there was no evidence of a cost

associated with estimating two compared to one summary descriptor of

a single set. Results suggest the visual system can not only average different

feature dimensions in parallel (Section 2.6.2) but can also compute different

types of ensemble statistics in parallel, as long as they belong to the same set.

Overall, results suggest multiple ensemble features and statistics can be

extracted from the same set in parallel. With multiple sets, a superset advantage

limits capacity to compute individual summaries of the same ensemble prop-

erty, and capacity is also limited for representing different ensemble features

and different statistics. These findings align with individual differences dis-

cussed in Section 3.1, suggesting ensembles are encoded hierarchically over

multiple stages of information processing.

To summarize what is summarized, ensemble representations are encoded for

sets distributed over space and time, across a broad range of spatial and

temporal properties, in multiple modalities. Much evidence suggests ensemble

statistics are fundamentally encoded, and encompass rich statistical informa-

tion. In addition to outlining key findings for novice readers and providing

a convenient reference for experts, this section highlighted crucial methodo-

logical aspects of foundational studies. Importantly, using sparse displays may

not necessitate reliance on ensemble representations. As discussed in

Section 5.6, this may artificially “force” responses based on ensemble represen-

tations, even when disadvantageous to performance. While most findings have

since been verified in more appropriate paradigms, it remains important for both

replication and extension that original findings are henceforth referenced with

applicable methodological qualifiers, and these potential confounds are not

propagated in future studies. Such design constraints may well account for

seemingly discrepant findings in studies discussed throughout this Element.

3 Theoretical Accounts

In addition to characterizing ensemble representations, several major theoret-

ical aspects of how ensemble encoding is accomplished have been consistently
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debated. Before introducing our own account, we outline these issues and

theories proposed to address them. We begin with a discussion of whether

ensemble representations are encoded by an overarching, unitary mechanism.

Next, we cover perhaps the most well-known debate, whether it involves

qualitatively different mechanisms. We then turn to subsequent questions

regarding differential contributions of individual items comprising ensembles.

Finally, we discuss evidence supporting theoretical claims that ensemble encod-

ing is automatic and obligatory. Whereas a number of theories have aimed to

answer specific questions, few can address this greater collection. We propose

ensemble encoding is best understood holistically in terms of RHT as the result

of rapid, implicit, feedforward processing distinct from individual element

perception.

3.1 Unitary versus Multiple Estimators?

Related to the discussion of whether multiple sets and descriptors can be

computed in parallel (Section 2.6), there is debate regarding whether ensemble

perception is accomplished by a central specialized mechanism versus a basic

mechanism repeated in various cortical loci and hierarchical levels. This ques-

tion is often addressed by studying individual differences, measuring correl-

ations between performance in various tasks within the same participants. If

there is substantial correlation between tasks, there is likely a common under-

lying process. However, interpretations of the specificity of such a common

process should be treated with caution. Careful control is necessary to assure

correlation is related to ensemble encoding rather than other sources of individ-

ual differences.

Haberman and colleagues (2015) measured correlations in observers’ abil-

ities to match a test stimulus to the average of a set of four stimuli across several

feature dimensions. Uncorrelated performance between errors for matching the

average orientation of a set of Gabors and errors in a verbal letter span memory

task served as a lower bound. Highly correlated errors in matching the average

orientation of high and low spatial frequency Gabors was taken as an upper

bound. Similar to the moderate positive correlation between errors for matching

the identity of a single face or the average identity of a set, errors were correlated

for low-level features (average orientation and color of triangles, average

orientation of Gabors and average color of dots, average orientations of

Gabors and triangles). Errors were similarly moderately correlated between

high-level features (average identity and average emotion of faces), but not

correlated between high- and low-level features (average identity and average

orientation of Gabors, and average emotion and color of dots). Although these
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patterns are taken as support that there is no “domain-general” processor for

ensemble encoding, especially given similar performance for single and aver-

age identity matching, it is possible adjustments were not purely based on

average representations but biased by the four individual representations

(Section 5.6). This raises the question of whether findings are more indicative

of the distribution of high- and low-level features for individual elements in

representational space.

Chang and Gauthier (2021) similarly examined correlations between obser-

vers’ performance when selecting the average of a set of four planes, birds, or

cars from six test stimuli. To quantify domain-specific object recognition within

each of the three categories, they also asked observers to study a display of six

planes, birds, or cars (different from stimuli in the mean judgment task) and

measured their accuracy when choosing which of three items was one of the six

studied targets over thirty-six subsequent trials. After partialling-out variance

accounted for by same-category object recognition, performance remained

correlated across domains in the averaging tasks. Results were taken as support

for domain-general ensemble encoding. However, observers were again asked

to average displays of four objects. Furthermore, the object recognition task

used test displays of six items, more likely to rely on average representation than

the actual ensemble task (Section 3.4.2). Therefore, the task intended to meas-

ure object recognition may instead have measured ensemble encoding more

than the ensemble task used, reiterating concerns regarding experimental

design.

Even studies using stimulus displays with larger set sizes have produced

conflicting results. As discussed in Section 2.6.2, Yörük and Boduroglu

(2020) observed no evidence of a common mechanism based on a lack of

correlation between observers’ adjustment errors for matching the average

length and orientation of twelve lines (cf., Chang & Gauthier, 2021 regarding

potential power issues). However, Kacin and colleagues (2021) found signifi-

cant correlations between length and orientation averaging using a variant of

this task with modified stimuli to ensure discriminately, a larger sample size,

and a 5AFC response instead of an adjustable slider. Taken together, results

tentatively suggest at least some shared processing related to ensemble

representations of low-level features and some shared processing for higher-

level ensemble representations, but no clear commonality across feature

domains.

In addition to individual differences for features, several studies asked whether

various types of statistical descriptors are encoded by a common mechanism.

Yang and colleagues (2018) showed observers sets of sixteen objects with

different sizes (strawberries) or orientations (lollipops with tilted sticks),
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and asked them to adjust a probe item to match the set’s mean size or orientation,

or to adjust a probe set of other sixteen items to match the set’s variability. There

was no evidence of correlation between mean and variability estimates for size or

orientation. Similarly, Utochkin and Vostrikov (2017) observed no evidence of

a correlation between mean size and numerosity estimates for a single set or two

distinct sets, and Khvostov and Utochkin (2019) replicated these findings for both

mean-numerosity and mean-variability pairs across participants and individual

trials. These findings were later challenged by Cha and colleagues (2021) who

accounted for variation in single stimulus feature estimation, used a larger sample

size, and found significant correlations between 2IFC judgments of the larger

mean size and the greater size variability of displays of six circles. Hansmann-

Roth and colleagues (2021) reported high correlations between mean color and

color variability discrimination measured implicitly using a version of priming-of

-popout visual search task (Section 2.4.3). After a streak of trials with a consistent

color distribution of distractors, observers were asked to choose which of two test

sets was more similar to the past streak. Target and foil set distributions could

differ in mean color, variance, or shape. Although observers were at chance at

discriminating distributions by shape, they could reliably discriminate by mean

color and by color variance, with highly correlated precision between these two

summaries. However, ensembles repeated several times before the test, which

may have reduced the noise in otherwise uncorrelatedmechanisms, retaining only

common sources of representational noise.

It is also unclear when ensemble representations are constructed over the

course of information processing. Joo and colleagues’ (2009) findings that

the accuracy of mean size judgments for displays of twelve circles (two

unique sizes) decreased when some individual circles were interocularly

suppressed suggest mean size computations during later stages of processing

after binocular information is combined. Additional findings in Section 3.3.1

also suggest averaging after viewpoint invariant scaling. Corbett andMelcher

(2014) later reported mean size adaptation using displays of fourteen differ-

ently sized circles transferred retinotopically, spatiotopically, hemispheric-

ally, and interocularly, extending mean size encoding across multiple spatial

reference frames and various stages of information processing before and

after inputs from the eyes converge in V1. Collectively, results suggest

a single statistical processor cannot be isolated to a given stage. The ubiquity

of summary statistical representations demonstrated throughout this Element

further suggests this process is carried out during multiple stages of informa-

tion processing.

Overall, differences in methodologies between studies do not allow for

a definitive understanding of whether ensemble summaries are readout from
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the same kind of perceptual representations. Perhaps, new research designs are

necessary to answer these questions. Nonetheless, the majority of results sup-

port a mechanism repeated at different levels of the visual hierarchy and

different cerebral areas devoted to different features versus a singular mechan-

ism at one cerebral site.

3.2 Qualitatively Different?

Perhaps the most well-known debate regarding ensemble encoding is whether

this process is qualitatively different from focused attentional processing for

encoding individual objects. “Does the visual system create a specific represen-

tation for a set of similar objects that is not just the sum of the representations of

the individual items? (Ariely, 2001)”

3.2.1 Parallel Processing versus Sub-Sampling

Earliest reports of ensemble perception assumed a mechanism qualitatively

distinct from focused attentional mechanisms. Ariely (2001) further proposed

this distinct form of processing discards information about individual items,

reducing the set representation to only higher-level statistical properties neces-

sary to maintain stable global perception and identify local regions of interest.

However, Myczek and Simons (2008) questioned this assumption based on

simulations showing performance in multiple averaging tasks could be

accounted for by subsampling strategies using focused attention instead of

necessitating novel, ad hoc averaging mechanisms.

Numerous studies stemming from this debate have yielded apparently con-

flicting results. Rebutting subsampling accounts, Chong and colleagues (2008)

noted no evidence of task-switching cost using interleaved versus blocked trials,

which Myczek and Simons (2008) suggested would engage different subsamp-

ling strategies. In addition, averaging performance was significantly lower with

displays of limited numbers of randomly selected elements, and performance

was identical regardless of whether the largest element was presented in the

larger- or smaller-average-size set. In contrast, Solomon and Morgan (2017)

found equivalent performance discriminating which of two side-by-side arrays

of Gabors contained a texture boundary defined by differences in mean orienta-

tion in the top and bottom of arrays with similar precision as when displays only

contained arrays comprised of a single top and bottom element. Similarly, Zepp

and colleagues (2021) presented items across two successive frames and found

averaging performance was best modeled by subsampling two items from

the second frame. Maule and Franklin (2016) reported subsampling just two

items suffices to reproduce the precision of most observers’ performance

23The Pervasiveness of Ensemble Perception

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
22

27
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009222716


judging average hue. On the other hand, Alvarez and Oliva (2008) found

superior performance in localizing the centroid of a set of four distractors versus

the individual distractor locations in a multiple object tracking task could only

be achieved if all distractors were pooled. Similarly, Semizer and Boduroglu

(2021) found overestimation of mean size in high- but not low-variance displays

of nine circles with similar proportions of larger-than-the-mean items between

conditions such that overestimation was not based on a larger-than-the-mean

subset.

As noted by Ariely (2008), perhaps the most convincing counterargument that

averaging is carried out by a qualitatively different process is given by predicted

performance in a membership identification task accomplished by a subsampling

mechanism. If observers subsample accurate representations of a few individual

items, the accuracy with which they can discriminate whether a given item was

present should be a function of the number able to be selected from the set. For

example, 75 percent performance is expected if observers can individually encode

two of four items as in Myczek and Simons’ (2008) simulations. However, no

subsampling accounts to date can explain better than average mean discrimination

versus chance member identification for sets of the same numbers of individual

objects. Ariely (2008) further pointed out Myczek and Simons (2008) use ideal

observer models that only incorporate processing errors, not fluctuations of errors

over time inherent in human observations. Later explicated by Whitney and Leib

(2018), as long as more than one item is subsampled, an averaging mechanism is

still required.

3.2.2 Distributed versus Focused Attention

Related to sampling debate, there has been much discussion of the attentional

mode involved in ensemble representation. In the attentional literature, set size

manipulations are often used distinguish between limited-capacity focused

attention and distributed preattentive processing (e.g., Treisman & Gelade,

1980), such that increasing the number of items in a display impedes processes

that require serial but not parallel processing. Applying this logic to ensemble

encoding has thus far resulted in a mixed bag of effects. However, not all studies

may have necessitated relying on the average representation and therefore may

not have been subject to set size effects. For example, Ariely (2001) reported

observers were able to discriminate whether a test circle was larger than the

mean size of the set regardless of whether sets were comprised of 4, 8, 12, or 16

circles (with four unique sizes). Chong and Treisman (2003) demonstrated

observers could discriminate which of two single circles, two patches of twelve

homogeneously sized circles, or two patches of twelve differently sized circles
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had the larger mean size. Yet, heterogeneous displays were again comprised of

only four unique sizes. Similarly, Chong and Treisman (2005b) found no effect

of set size when observers determined which side of displays of eight and

sixteen circles had the larger average size over different distributions of only

two unique sizes. When asked to discriminate whether a face was a member of

a set of four to sixteen faces (with four unique emotions), Haberman and

Whitney (2009) reported the frequency with which observes false-alarmed to

the mean emotion was unaffected by set size. In contrast, Ji and Pourtois (2018)

reported less precise averaging of facial expressions as a function of set size

when participants used a slider to estimate the average emotion of a set of four to

sixteen faces with unique identities but only four different emotions, but this

effect disappeared with decreased variance between the unique emotions.

Yet, even studies using unique feature values yield apparently discrepant

results. For example, Corbett and Oriet (2011) presented observers with RSVP

streams of five to eleven circles with unique sizes and found they overwhelm-

ingly incorrectly endorsed a test circle representing the mean size of the entire

stream as being present even though they were at chance to correctly endorse

tests representing sizes that were present. Allik and colleagues (2013) also

observed no effect of set size when observers were presented with sets of 1, 2,

4, and 8 uniquely sized circles and indicated whether the mean size was larger

than a previously presented reference, and further that mean estimates were

similar regardless of whether a given size increment was distributed over all

circles or applied to only one. Marchant and colleagues (2013) presented

observers with sets of four to sixteen items with either two unique sizes or all

unique sizes and asked them to adjust a probe to match the average size.

Adjustment accuracy was unaffected by set size with only two unique sizes

but decreased as a function of set size with all unique sizes.

Several studies have even reported improvements in ensemble task perform-

ance over increasing set sizes. When Robitaille and Harris (2011) presented

observers with displays of two to ten uniquely sized circles and asked them to

determine whether the mean size was larger than a target circle, they responded

faster and more accurately as a function of increasing set size. Furthermore,

when observers viewed displays of two to ten uniquely tilted lines, they

exhibited opposite effects of faster andmore accurate performance with increas-

ing set size when determining whether the display mean orientation was more

horizontal than a target versus slower, less accurate performance with increas-

ing set size when determining whether the display contained the target. Brezis

and colleagues (2015) presented observers with RSVP streams of 4, 8, or 16

unique two-digit numbers and asked them to estimate whether the average was

larger than 50. When response time was limited, speed and accuracy increased
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with increasing set sizes. Using a priming-by-pop-out paradigm (Section 2.4.3),

Chetverikov and colleagues (2017c) manipulated the number of 8, 14, 24, or 36

uniquely tilted lines within a streak of trials and found the entire feature

distribution was learned faster with larger set sizes. Corbett and Munneke

(2020) independently manipulated set size and the stability of the mean size

of a display of multiple Gabors over successive trials and found observers were

able to discriminate the orientation of a target singleton faster purely as

a function of mean size stability whereas search times slowed only as

a function of increasing set size. This pattern suggests increasing set size does

not affect the benefits of ensemble stability on visual search discussed further in

Section 5.4.

To account for some of these discrepancies, Utochkin and Tiurina (2014)

proposed set size effects may be modulated by the range of feature values. They

first replicated Marchant and colleagues (2013) findings of set size effects when

observers discriminated which of four subsequently presented test dots matched

the average size of sets of 4, 8, or 16 items comprised of either two unique sizes

or with all unique sizes. Similar to findings by Ji and Pourtois (2018), set size

effects disappeared when variance between displays with all unique items and

only two unique sizes was controlled. Maule and Franklin (2015) also reported

no set size effects when variance was controlled. Participants were presented

with displays of four to sixteen circles and determined which of two test circles

represented the average hue. Importantly, results described so far used many

different methods and features, making it difficult to offer any definitive

answers regarding the overarching effects of set size. Future studies considering

these issues will hopefully clarify the nature of set size effects in ensemble

encoding.

Importantly, detrimental effects of set size on averaging should not be

directly interpreted as evidence for low-capacity processing and facilitating or

absent effects should likewise not be directly interpreted as evidence for high-

capacity processing. Capacity can also be assessed by asking how many indi-

vidual objects are effectively averaged. Using equivalent noise analysis,

internal noise and capacity can be estimated as a function of set size by

measuring performance at different levels of stimulus uncertainty. Each indi-

vidual item is encoded with a certain amount of early sensory noise that may

change with set size, then a subset is efficiently sampled for averaging

(Figure 3a, b). Dakin (2001) first used equivalent noise analysis to show the

effective sample size for orientation averaging is approximately equal to the

square root of the set size. Dakin and colleagues (2005) obtained similar

estimates for average direction of motion, regardless of the density of individual

elements or the overall area they occupied. Although similar estimates were
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obtained for averaging, even more precise representations were observed for set

orientation (Solomon, 2010) and size (Solomon et al., 2011) variance. Im and

Halberda (2013) obtained estimates for size averaging of up to twenty-three

elements suggesting internal noise was less than individual element noise. In

theory, the square-root growth of the sample size in proportion to set size is

sufficient to account for detrimental set size effects despite variability across

different feature dimensions (Figure 3c).

Allik and colleagues (2013) suggested a Noise-and-Selection model of

ensemble perception, predicated on the assumptions that not all items are

included in the mean computation, and each item that is included carries some

degree of noise independent of set size. In this model, an individual’s internal

noise level can be derived from their precision determining single element size.

However, it is important to note performance in discriminating a test circle from

the mean is not subject to the same illusory conjunctions as recalling the size of

an individual circle in a specific location (e.g., Treisman & Gelade, 1980). In

any case, it is not immediately apparent how such subsampling models recon-

cile with findings that performance stays constant or even improves with larger

set sizes.

An alternative way of modeling set size effects is to sample all items to some

degree. Such a model proposed by Baek and Chong (2020a) predicts when

many noisy and uncorrelated measurements are averaged, individual measure-

ment errors of non-systematically varying magnitudes and directions average

out to eliminate this error in the overall pooled estimate, such that average

representations become more precise than individual measurements. This noise

cancellation benefits from increasing individual measurements with uncorrel-

ated errors (Figure 3d, e). However, if early encoding noise also increases with

set size (e.g., Dakin, 2001), this can counteract noise cancellation (Figure 3f).

Framing ensemble averaging as a balance between early individual element

encoding noise and noise cancellation allows for a unitary account of set size

effects without the need to imply different sampling capacities (Figure 3g). If

early noise grows rapidly with set size, noise cancellation is insufficient to

compensate and there is a detrimental effect of set size. If early noise grows

slower, noise cancellation can compensate with invariance or even facilitation

of averaging.

Although extreme versions of subsampling theory suggest ensemble encod-

ing can be completely explained within the scope of focused attention, Baek and

Chong’s (2020a) distributed attention model better predicts several aspects of

typical averaging performance, such as saturation for smaller set size due to

attention being spread more completely over fewer items, increased perform-

ance due to greater noise cancellation at larger set sizes, and asymptotic
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Figure 3 Left: Square root sampling. (a) Two of four orientations are randomly sampled on each trial, each corrupted by Gaussian

noise (black dots), and the mean is calculated (red dots; red line tracks trial-to-trial sample average) (b) Four of sixteen orientations are
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Caption for Figure 3 (cont.)

randomly sampled with the same amount of Gaussian noise. (c) The standard deviation of sample averages around the set mean

shrinks with set size. Right: Exhaustive averaging. (d) All four items are sampled and corrupted by Gaussian noise with σ = 4.

(e) If noise remains constant over set size, all items sixteen are sampled with the same amount of noise (σ = 4). (f) If noise grows with set size,

all sixteen elements are sampled with increased noise (σ = 8). (g) Precision improves as a function of set size if noise does not change

(noise factor = 0); precision remains approximately the same if noise grows by 0.2 per item (noise factor = 0.2); and precision drops

with set size if noise grows faster than noise cancellation (noise factor = 0.5).

https://doi.org/10.1017/9781009222716 Published online by Cambridge University Press

https://doi.org/10.1017/9781009222716


performance for increasingly large set sizes due to late internal noise. The

spread of attention over items can be thought of as a continuum from extremely

focused local attention dedicated to processing items at maximum resolution, to

broadly distributed global attention over multiple items at cost to resolution.

Whereas focused attention is associated with tasks requiring object individu-

ation, ensemble perception is more associated with distributed processing

without requiring explicit knowledge of individual objects (e.g., Treisman,

2006). Indeed, there is evidence performance on ensemble tasks benefits from

shifting to a more distributed processing mode. Most notably, Chong and

Treisman (2005a) found more accurate performance in a size averaging task

when it was combined with an easy visual search for a closed circle among open

circles requiring parallel, distributed attention, compared to a difficult search for

an open circle among closed circles requiring serially focused attention to

individual items.

3.2.3 Is Attention Necessary?

In addition to the question of whether distributed attentional mechanisms

underlie ensemble encoding, it remains unclear whether attention is necessary

at all. This question is typically addressed using various manipulations to divert

or attenuate attention and measure an unattended ensemble’s influence on

performance, measuring performance in an ensemble task under increased

processing loads, or in patient populations with atypical attentional processing.

Multiple studies report intact ensemble encoding when attention is select-

ively directed away from the to-be-encoded set. Alvarez and Oliva (2008, 2009;

Section 2.1.6) used an attention-demanding multiple object tracking task requir-

ing observers to constantly monitor one set of four independently moving

objects while ignoring a second set of moving objects or ignoring a constantly

changing background consisting of differently oriented Gabors. Even when

attention was withdrawn and observers could not report the individual locations

of elements, they were still able to accurately indicate the centroid location of all

the elements in both the unattended and attended sets and detect global changes

in the average orientation of the background, suggesting ensemble but not

individual information is relatively preserved under conditions of diverted

attention. Chen and Zhou (2018) later reported ensemble summaries of groups

of both tracked and untracked faces unintentionally affected item recognition,

although tracked face subsets exerted a stronger influence.

Bronfman and colleagues (2014) tested whether observers extracted an

impression of color variability from multiple items outside an attended subset.

Observers viewed arrays of color letters and were asked to remember all the
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letters from a particular row. Apart from the main letter recall task, observers

could report how diverse the colors of letters in the attended and unattended

rows were with similar accuracy. Extending these results, Ward and colleagues

(2016) modulated individual letter colors while holding variance constant and

found judgments remained accurate despite change blindness for individual

colors. However, Jackson-Nielsen and colleagues (2017) implicitly tested color

diversity judgments using a task where observers had to recall all letters in a pre-

cued row, then were unexpectedly asked which of three probes (one matching

the ensemble color or size variance, one not matching, and one with the same

color or size variance as the nonmatching but with upside-down letters) was

most similar to or had the same variance as the previous display. Many obser-

vers showed inattentional blindness, incorrectly selecting nonmatching probes,

suggesting attention was necessary for a conscious impression of the ensemble.

To reconcile with earlier findings, the authors proposed at least some attention

was needed for conscious ensemble perception. However, an alternative explan-

ation for this null effect is that it would be impractical for participants to retain

a conscious perception of background information that is irrelevant to the main

attention-demanding letter recall task but it can nonetheless influence percep-

tion (e.g., Moore & Egeth, 1997).

Several studies have reported ensembles encoding even when processing

resources are engaged in another attention-demanding task. Dakin et al. (2009)

asked observers to report the orientation of an oddball white T in a sequence of

black T’s at fixation either before (low load) or after (high load) estimating

whether the overall tilt of a set of Gabors was clockwise or counterclockwise.

Overall, results suggested ensembles are extracted with decreased precision

under high central attentional load. However, Epstein and Emmanouil (2017)

found no evidence for an effect of high working memory load on average

discrimination. Observers’ discriminations of which of two patches of twelve

circles each set (with four unique sizes) had the larger average size were

unaffected by having to perform a low (displays of two-colored squares) or

high (displays of four-colored squares) object memory task to determine

whether the color of a square had changed over two successive displays or

a low (displays of two white squares) or high (displays of four white squares)

spatial memory task determining whether the location of a square changed.

Bauer (2017) found evidence that increasing working memory load by increas-

ing the length of a to-be-remembered string of four to seven digits actually

increased the precision with which observers discriminated whether a probe line

was longer than the average line length.

In contrast, several studies using paradigms known to deplete attention and

prevent conscious awareness have found explicit effects of ensemble encoding.
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Joo and colleagues (2009) demonstrated mean size is represented even when

focused attentional resources are depleted using an attentional blink paradigm

(Raymond et al., 1992) in which observers were asked to identify two targets in

RSVP streams of single items. Observers exhibited typical patterns of perform-

ance and were less able to detect the second target (T2) when it was presented in

close temporal succession to the first target (T1), which presumably was still

engaging central attentional resources. When T2 displays were composed of

two displays of sixteen circles (different proportions of two unique sizes),

accuracy to discriminate which side of T2 had the larger average size remained

similar across lags, suggesting even though individual items were blinked from

conscious perception, they were nonetheless included in the average.

Choo and Franconeri (2010) presented observers with displays of eight

circles and asked them to judge whether a test circle was larger than the average.

When two of the circles were surrounded by a four-dot mask to prevent them

from reaching conscious awareness (object substitution masking), observers

still included these circles in their average discriminations. However, Jacoby

and colleagues (2013) reported this ability to average masked circles disap-

peared when they were restricted to opposite sides of the display to prevent

spatial overlap that may have otherwise captured attention.

Also using an attentional blink paradigm, Corbett and Oriet (2011) implicitly

tested ensemble encoding by measuring observers’ abilities to identify an outlier

circle (T2) noticeably larger or smaller than nine other uniquely sized circles in

RSVP streams of circles immediately followed by RSVP streams of shapes in

which observers had to discriminate a target shape (T1). When presented with

a test circle after the sequence, observers incorrectly selected the mean of the

entire sequence as being present over an outlier that was present. Although most

pronounced at shorter lags when central attentional resources were still engaged

in processing T1, observers still false-alarmed to themean at longer lags, but were

able to correctly discriminate the outlier from a foil that was neither the mean nor

present. A further study byMcNair and colleagues (2017) using a set of four face

stimuli reported similar findings for average emotion and gender.

Studies of patient populations with absent or compromised attentional mech-

anisms have demonstrated ensemble representations survive when individual

objects comprising ensembles cannot be consciously perceived. For example,

unilateral spatial neglect (USN) is a common neurological disorder usually

caused by right hemisphere damage, characterized by a failure to attend stimuli

on the contralesional side (e.g., Driver & Vuilleumier, 2001). Extinction is

commonly observed in USN, where patients disregard a contralesional stimulus

with simultaneous bilateral stimulation, although the same stimulus may be

detected when presented in isolation (e.g., de Haan, Karnath, & Driver, 2012).
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Yamanashi Leib and colleagues (2012) reported averaging despite extinction

in four patients with mild chronic left-side neglect. After presentation of a target

circle, the task was to search for a circle of the same size presented in a cloud of

various-sized circles all on one side of the display and triangle distractors on the

other side. The average hit rate was 50 percent on the left, compared with

70 percent on the right, confirming extinction. Most interestingly, when the

target was absent, the false-alarm rate was greater when the mean circle was the

same size as the target, but only for left-side clouds. Taken with the finding that

left-side distractor triangle size also affected right-side search, results suggest

patients implicitly computed mean size in the neglected field.

Pavlovskaya, Hochstein and colleagues (2015) also studied ensemble per-

ception in USN patients, using three different tasks. In all cases, a reference

circle appeared at fixation, then a blank screen, followed by a unilateral or

bilateral array of nonoverlapping circles, with an average size larger or smaller

than the reference. Observers judged whether the average size of the array was

larger than the reference. With unilateral presentation, patients and controls

performed above 75 percent correct for either side, but patient performance was

significantly reduced for left- versus right-side presentation, whereas controls

showed similar performance for the two sides. Patients’ performance deficits

were stronger when averaging left-side elements in cases of extinction with

items simultaneously presented on the right. Critically, with bilateral arrays, the

two sides had different sizes to allow for measurement of whether only one or

both sides were included in the average. Patients showed deficient performance

in conditions where the left side of the array had a larger difference from the

reference. Nevertheless, their performance was significantly worse for the right-

side condition compared with the both-sides condition (which differ only in left-

side average), indicating “neglected” left-side circles did contribute to the

average. Results provide converging evidence USN impairment is limited to

focused attention mechanisms, and distributed attention mechanisms largely

spared in USN are involved in ensemble encoding (Section 3.2.2).

Further evidence that ensemble statistics can be encoded with reduced or no

focused attention in USN is given by findings that repeating the global mean

size while randomly varying the sizes of individual Gabors improved search for

an orientation singleton target (Lanzoni et al., 2014), similar to patterns of

performance in neurotypical controls and in previous studies with neurotypical

observers (Section 5.4). The involvement of distributed versus focused atten-

tion in ensemble encoding is also supported by findings that patients with

simultanagnosia, who can reliably attend to only a single item, nonetheless

make accurate estimates of mean color and size for displays of multiple circles

(Demeyere et al., 2008), and patients with prosopagnosia, who have difficulty
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recognizing faces, nevertheless accurately estimate the average identity and

emotion of crowds (Yamanashi-Leib et al., 2012). Collectively, reports of intact

ensemble encoding in patients with atypical focused attentional processing

provide converging evidence ensemble perception depends on a global mech-

anism rather than on focused attention and subsampling.

In contrast to neglect patients, autistic individuals show enhanced local

processing of features and fine detail (e.g., Happé & Frith, 2006). So far, studies

of ensemble encoding in individuals with Autism Spectrum Disorder (ASD)

have returned seemingly discrepant results. Corbett and colleagues (2016)

found above-chance accuracy in recalling the mean size of a set of circles

despite poor accuracy in recalling individual circle sizes (membership task),

in line with superior mean versus member performance in the general popula-

tion. Furthermore, ASD judgments of single circle size were biased by mean

size adaptation, suggesting averaging was automatic and implicit. Karaminis

and colleagues (2017) also found no evidence of differences between autistic

and neurotypical children’s precision in ensemble and baseline emotion dis-

crimination, and face identification. This collection of findings further under-

scores the fundamental nature of ensemble encoding.

However, additional studies have found differences in ensemble perception in

ASD. Maule and colleagues (2016) presented sets of four to sixteen colored

discs and asked participants whether a single item was present, or which of two

items matched the mean color. Autistic adults were slightly more sensitive in

detecting membership but performed similarly to controls in the mean task.

However, with four element sets, autistic participants needed a greater difference

between tests than controls in the mean task. Rhodes and colleagues (2015) also

found children with autism correctly identified members of sets of four faces

more frequently, and were less prone to identify missing mean faces as having

been present. Lowe and colleagues (2018) presented neurotypical participants

with differing sensitivities to sensory input (assuming higher sensitivity in ASD)

with an array of nine circles comprised of three circles in three colors, and asked

them to remember the sizes of circles in two of the colors and ignore circles in

the third color. When recalling the size of a single circle, participants demon-

strated bias toward the mean size of the probed color as an inverse function of

sensory sensitivity. Importantly, these discrepancies between ASD and neuroty-

pical averaging generally result with displays of relatively small set sizes, even

more likely to be encoded using focused attention by individuals with ASD. As

discussed further in Section 5.6, these findings may actually be the result of

superior individual object versus inferior ensemble representation in ASD.

Overall, results converge in favor of qualitatively different processes under-

lying ensemble versus individual item encoding. Although some distributed
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attention may be necessary for conscious perception, ensemble representations

nonetheless implicitly affect behavior and survive even when focused atten-

tional resources are compromised.

3.3 Contributions of Individual Elements

In addition to the question of whether ensemble encoding is accomplished by

qualitatively different mechanisms, it is unclear how individual elements con-

tribute to ensemble representations. We first review findings regarding whether

ensemble representations contain information about individual elements. Next,

we discuss possible visual field differences in individual item contributions and

reports ensemble representations can be distorted by salient members but

remain robust with respect to obvious outliers. Finally, we review converging

evidence that ensemble statistics are computed directly, not inferred from

individual components.

3.3.1 Do Ensemble Representations Contain Any Individuated
Information?

Multiple studies report ensemble perception is possible even when detailed

information necessary to perceive individual elements is unavailable due to

crowding. Parkes and colleagues (2001) first demonstrated observers could not

discriminate the orientation of a grating surrounded by a ring of similar gratings

presented peripherally, but the orientation of this grating was nonetheless

included in calculations of average orientation. Fischer and Whitney (2011)

obtained similar results for average emotion of crowded sets of faces. Dakin

and colleagues (2009) independently manipulated crowding within a set of

differently oriented Gabors and attention using a demanding central task to report

the orientation of an oddball white T embedded in a sequence of black T’s either

before (low load) or after (high load) estimating whether the overall tilt of the

Gabors was clockwise or counterclockwise. Crowding and attention exhibited

independent influences on averaging performance, such that crowding decreased

item precision, whereas attentional load modulated averaging efficiency.

Evidence of context-based rescaling suggests ensemble encoding operates

over individuated objects. Given the retinal size of an object changes dramatic-

ally as a function of viewing distance but perceived size remains constant until

distance information is available (Holway & Boring, 1941), the ability to

rescale retinal image properties into a context-invariant representation is neces-

sary to maintain perceptual constancy. Tiurina and Utochkin (2019) used

stereoscopic displays to present observers with sets of circles perceived at

various apparent distances. When asked to adjust the size of a probe to match
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the average, observers exaggerated the mean size of objects presented at farther

apparent distances. Observers were also shown objects of different retinal sizes

at four different apparent distances either positively correlated (the bigger the

size, the farther the distance) or negatively correlated. The positive correlation

amplified the apparent contrast between smallest and largest items (e.g., largest

items far away appeared even larger) and negative correlations attenuated this

contrast. Observers demonstrated typical range effects (Section 2.4.2), with

decreased precision for positive-correlation displays. Given the distributions

of retinal sizes and depth planes were identical in both conditions, results

suggest size-distance rescaling involved in averaging cannot simply be

explained by the computation of average 2D size rescaled by average distance

but instead preceded by rescaling of individual item sizes as a function of their

apparent distances. Markov and Tiurina (2021) later extended these results to

variance perception.

Im and Chong (2009) used stimuli presented in different configurations to

further demonstrate context-based rescaling in size averaging. Observers com-

pared the mean sizes of two sets of central circles (on opposite sides of fixation),

surrounded by either smaller or larger circles. Although instructed to only

compare the mean sizes of the central sets, judgments were biased as an inverse

function of the size of the surrounding circles (i.e., Ebbinghaus Illusion). These

findings strongly suggest ensemble summaries are subject to configural and

contextual interactions during mid- to high-level stages of representation,

involving at least some information about individual objects. Haberman and

Suresh (2021) demonstrated size–distance rescaling in average size perception

is also induced by pictorial depth cues. Findings that averaging precision is

modulated by size–distance correlation suggest rescaling involves at least some

knowledge of how individual sizes and distances are bound. Yamanashi Leib

and colleagues (2014) observed viewpoint invariance in face identity averaging

such that observers were fairly accurate in adjusting a forward-facing test to

match the mean identity of a set of 1, 2, 4, or 18 (six unique faces) sequentially

presented faces regardless of whether the set was all oriented 22.5° leftwards or

each face was randomly presented at one of three orientations (90° leftwards,

22.5° leftwards, and 22.5° rightwards). Taken together, findings collectively

suggest ensemble representations involve at least some information about

distinct elements, but do not necessarily require individual object encoding.

3.3.2 Location Bias

The distinction between foveal and peripheral vision reflects qualitative and

quantitative differences in neuroanatomy and visual experience. Foveal vision
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is associated with fine resolution well-tuned for identifying individual objects

and details. Peripheral vision is more broadly tuned to coarser information

rendering it more sensitive to transient objects and events. Given proposals

that ensembles can be represented without encoding individual elements,

foveal vision should not play a special role in summary representation.

Along these lines, Chong and colleagues (2008) found no evidence of differ-

ences in size averaging for items spread across the entire visual field compared

to items clustered around fixation. Wolfe and colleagues (2015) came to

a similar conclusion in a series of eye-tracking experiments in which obser-

vers estimated the average emotion of a set of faces. Averaging during gaze-

contingent occlusion of foveal stimuli was similar to performance in

a baseline no-occlusion condition, suggesting ensemble representations

were accomplished without foveal input. However, when Ji and colleagues

(2014) varied the ratio of happy and sad faces in foveal and peripheral regions,

items near fixation had a larger influence on perceived average emotion.

Findings indicate ensemble statistics can be efficiently encoded for peripheral

information where details are less visible and individuation can be compli-

cated by crowding, yet foveal information may contribute uniquely when

central and peripheral items are simultaneously available. Collectively, results

suggest ensemble perception can be based both on coarse, “texture-like”

information and fine information associated with detailed individual object

perception in line with roles of focused and distributed attention discussed in

Section 3.2.2.

Spatial asymmetry in the retinotopic representation of the visual field has also

been identified in ensemble perception. Li and Yeh (2017) reported a left-side

bias in a size-averaging task using differently sized dots presented on both sides

of fixation. The mean size of one-half of the display was always larger. When

the larger mean size was on the left versus right side, observers tended to

overestimate the whole set mean more. This bias was modulated by spatial

attention such that when a spatial cue shifted attention to the left, averages were

even more biased toward the mean size on the left, and this bias was attenuated

or abolished when attention shifted to the right. Similarly, Pascucci and col-

leagues (2021) used a spatially weighted average model to demonstrate left-side

bias in size averaging for displays of dots presented at different degrees of

foveal dispersion, displays with stimuli exclusively presented to one visual

field, and when observers were pre-cued to attend one side of bilateral displays.

Both studies outline various possible mechanisms, such as the overall right-

hemisphere advantage in processing holistic information, left-to-right reading-

scanning habits, and the relationship to left-side asymmetry in the deployment

of attention.
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3.3.3 Amplification Bias

The debate between parallel exhaustive processing and limited-capacity sub-

sampling has generally been presented as two opposite views of the mechan-

isms underlying ensemble computation. The resolution of this apparent

controversy may lie in a hybrid model, whereby global ensemble statistics are

biased by local array elements when these are salient and attended. Such

a hybrid model was originally suggested by De Fockert and Marchant (2008)

after observing attention to a single large/small set element skews perception of

average size similar to the manner in which larger versus smaller feature values

usually attract attention more efficiently (Treisman & Gormican, 1988).

A recent study by Goldenberg and colleagues (2021) demonstrated similar

amplification of crowd emotion driven by attentional bias to emotional faces.

Choi and Chong (2020) compared the effects of selective attention increasing

the perceived size versus the weighted contribution of an item on mean size

computations by pre-cueing and post-cueing one of eight circular gratings in

a radial array and tasking observers to adjust a test to the set’s mean size and

discriminate the clockwise or counterclockwise orientation of the cued grating.

Pre-cued mean size adjustments were biased by both perceptual enlargement

and overall greater weighting of the cued grating, suggesting mean size repre-

sentations can be modulated by altering the appearance of pre-cued items in

addition to effects of weighted averaging observed in the post-cue condition.

Iakovlev and Utochkin (2021) also reported size amplification bias in variability

perception, implying limited-capacity attentional sampling of salient items.

A hybrid model is further supported by results from Dodgson and Raymond’s

(2020) study in which they trained observers to attribute higher value to elements

of a certain color and found mean size judgments were biased toward sizes of

elements presented in that color. This bias disappeared with masked presenta-

tions. Results suggest only rapidly acquired prioritized ensemble statistics survive

when processing time is limited, but salient elements are also combined into

averages with longer processing time. Munneke and colleagues (2022) recently

reported a similar bias of average size representations toward larger sizes pre-

sented in colors previously associated with high rewards. Saliency-based ampli-

fication bias in average flicker frequency (Section 2.1.13) and serial order effects

on averaging induced by temporally salient objects (Section 2.3.2) have also been

previously reported.

3.3.4 Outlier Discount

On the “flip-side,” several studies have demonstrated outlying feature values

that would otherwise introduce amplification bias do not affect ensemble
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representation. For example, Haberman and Whitney (2010) had observers

adjust the mean emotion of a set of twelve faces in which ten faces were

drawn from a narrow range around the mean and two dramatically deviated

from that range. Adjustments were more tightly concentrated around the local

mean of ten faces than the global mean of all twelve. When a contour of highly

similar orientations was embedded within a larger display of differently tilted

Gabors, observers similarly did not include this outlier contour in average

orientation estimations (Cha & Chong, 2018). Along these lines, Utochkin

and Tiurina (2014) reported averaging can occur for all items in parallel, but

this computation is hampered when some items differ too much.

De Gardelle and Summerfield (2011) referred to the mechanism that pro-

tects ensemble representations from biasing effects of items with no relation to

the group as robust averaging. They reported judgments of whether the

average color of a set of eight circles was more red or blue or whether the

average shape was more circular or square were best approximated by a model

basing perceptual decisions mainly on inlying colors/shapes, deweighting, or

discounting outlying values in heterogeneous displays. Based on findings that

observers who weighted outliers less in their estimates of whether the mean

orientation of a radial array of eight Gabors was more tilted than the orienta-

tion of a central reference, Li and colleagues’ (2017) simulations of robust

averaging resulted in enhanced performance, optimizing averaging in the

presence of late noise that corrupts average estimates. This enhancement is

not predicted by an ideal observer model that perfectly incorporates individual

elements. Therefore, given noisy input and integration processes underlying

ensemble representation, robust averaging is a clear strategy to optimize

information integration.

Somewhat opposite to Dodgson and Raymond’s (2020) findings, Epstein and

colleagues (2020) foundmean adjustments were skewed toward an outlier when

the time between a target ensemble and mask was short. However, this bias

disappeared gradually as the interval became longer, suggesting outlier discount

is a relatively slow, iterative process. In a subsequent electroencephalography

(EEG) study, Epstein and Emmanouil (2021) presented observers with sets of

tilted lines with fixed mean orientations and asked them to detect when an

“oddball” set with a different mean orientation or with the same mean but some

outlier orientations occurred. The resultant P3b, an event-related potential

related to visual awareness, had a shorter latency when the oddball set had

a different mean versus when it included outliers but kept the same mean,

suggesting ensemble information was processed earlier than outlier informa-

tion. Taken together, findings imply dealing with outliers involves both feed-

forward and feedback processing. In Section 5.3.2, we elaborate further on how
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ensemble encoding may serve as a mechanism for detecting salient outliers not

included in summary representations.

3.3.5 Mathematical Relation

Considering the contributions of individual elements ultimately raises the ques-

tion of whether ensemble statistics are computed in accordance with mathemat-

ical statistics such as the arithmetic mean (Figure 4a) or directly without the need

for intermediate representation of individual elements (Figure 4b).

One approach to understanding the nature of computations underlying

ensemble summary statistics is to gauge the degree to which they can be

predicted as a function of their individual parts. Along these lines, multiple

studies discussed in Section 2 demonstrated the same Stevens’s Power Law

relationship for physical and perceived average stimulus properties as between

physical and perceived individual properties of length, tilt, and brightness of

individual items. Similarly, perceived average animacy (Yamanashi Leib et al.,

2016) and economic value (Yamanashi Leib et al., 2020) can be predicted based

on individual estimates for ensemble members.

Although ensemble and individual item statistics exhibit similar relationships

between physical and perceived magnitudes, this does not necessarily mean

Noisy individual representations

0 90Orientation

Pooling Mean

b

Σ N

0 90Orientation

Orientation sum Number line0 90 1 4

0 90Orientation

Mean

a

Σ/N

Figure 4 (a), Arithmetic averaging: First, individual noisy representations

produce two separate summaries: sum and quantity. Then, the sum is divided by

quantity. (b) Direct averaging: Individual signals are immediately pooled,

representing the mean without necessitating intermediary representations.
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ensemble statistics are inferred in a secondary manner. Lee and colleagues

(2016) tested for such relationships between numerosity, mean size, and total

area, which each can be expressed as a function of the other two. Observers

viewed displays of 10, 20, or 40 dots presented in one of three possible mean

sizes in 16 percent increments, and one of three possible densities in 16 percent

increments, then judged whether the magnitude of a test stimulus (a single dot

for area or the sum of all sizes, a patch of homogeneous dots for numerosity, and

a single circle for mean size) was greater than the previous display. Resultant

psychometric functions had steeper slopes for mean size versus numerosity and

area discriminations, suggesting mean size was discriminated more precisely.

Furthermore, area discrimination was well predicted by mean size and numer-

osity discrimination, but neither numerosity nor mean size discrimination was

well predicted by the discrimination of remaining two properties. Raidvee and

colleagues (2020) similarly reported more precise mean size versus total size

discrimination. Together, results suggest mean size and numerosity are directly

represented, not inferred from more primary statistics.

Allik and colleagues (2013) directly examined whether perceived mean size

was computed as a function of the associative law of arithmetics. They pre-

sented observers with a reference circle for 500 ms followed by a display of 1, 2,

4, or 8 circles for 200ms or 1,000ms, and asked them to judge whether themean

size of the circles was larger than the reference. Across all set sizes, mean

estimates were similar regardless of whether a given size increment was

distributed over all circles or applied to only one display element. Taken with

findings that observers were comparatively poor at judging the sizes of one

circle at a given location (Allik et al., 2014), they concluded mean perception is

indeed based on direct averaging versus inference from individual items.

Regardless of how individual objects are encoded, findings collectively

suggest mean features of sets can be computed directly, and point to computa-

tional mechanisms for ensemble statistics distinct from the computation of the

arithmetic mean.

It seems ensemble representations are linked to at least some information about

distinct elements, but not necessarily predicated on individual item encoding.

Whereas ensemble representations can be modulated by factors such as the ability

of fine- versus coarse grained-information, and salient objects can skew set esti-

mates, much evidence suggests encoding remains robust, allowing for the exclu-

sion or segmentation of items too different from the collective. Evidence also

suggests the manner in which ensembles are encoded is computationally distinct

from calculating the arithmetic mean of individual elements, implying summary

representations retain some link to but are not directly derived from individual item

representations.
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3.4 Obligatory?

Although numerous results suggest the process involved in ensemble encoding

is engaged automatically, most studies explicitly ask observers to calculate the

average, often in situations where individual representations could also be

accessed. Dubé and Sekuler (2015) comprehensively reviewed findings that

single object representations are indeed averaged regardless of explicit instruc-

tion, suggesting obligatory ensemble representation. Negative AAEs

(Section 2.5) also suggest ensemble properties are implicitly encoded even if

this prevents veridical object perception. Here we consider further evidence that

set statistics are encoded incidentally, perhaps even in an obligatory manner.

3.4.1 Incidental Representation

Corbett and Oriet (2011) first reported when observers viewed RSVP streams of

five to eleven circles (Figure 5a), their discriminations of whether a circle

presented before the stream represented a member or the mean size of the

stream were similarly accurate (mean judgment; Figure 5b). However, they

were even more accurate in discriminating whether a circle presented after the

stream represented its mean size, but could not discriminate whether the circle

was a member of the stream (member identification; Figure 5b), even when

explicitly asked to determine whether it was the largest circle. These findings

strongly suggest the mean was automatically encoded regardless of whether

5
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Search:  Test before RSVP
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Figure 5 (a) Observers were presented with RSVP sequences of circles and

a test either before or after the sequence. In the mean judgment task, they

determined whether the test represented the sequence mean size. In the member

identification task, they determined whether the test was a member of the

sequence. (b) When the test was presented before the sequence, observers were

able to determine whether it was the mean or a member with similar accuracy.

However, when the test was presented after the sequence, they were most

accurate in the mean judgment but near chance at member identification.
Source: Adapted from Corbett and Oriet, 2011
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observers were explicitly instructed to search for or implicitly asked to recall it,

and despite their inability to implicitly recall individual sizes.

Oriet and Hozempa (2016) demonstrated statistical representations of sets are

incidentally constructed and can be consciously reported even when participants

had no instruction or apparent intention to do so. Participants completed one of

three different tasks evaluating an irrelevant dimension of displays of circles

(whether there were more than fifteen circles present, whether there were two of

the same color circle present, or passive viewing). Afterward, theywere presented

with a test and instructed to adjust it to the mean, smallest, then largest circle of

the entire set of 4,200 circles. Although never previously asked anything about

the sizes of the circles, they could accurately reproduce themean, upper and lower

bounds, and could even adjust a bar graph to represent the distribution.

3.4.2 False Alarms to the Mean

In line with incidental encoding, there is striking evidence dating as far back as

Hollingworth (1910) (Section 1.1) that observers automatically and implicitly

represent task-irrelevant mean properties of sets to the extent that they “false

alarm,” mistakenly remembering items representing the mean when no such

items were actually presented.

In Corbett and Oriet’s (2011) study, regardless of whether observers searched

an RVSP sequence for a target or recalled whether it was present in the

sequence, they made more false alarms, incorrectly endorsing a circle as

representing the mean as being present as a linear function of how similar it

was to the mean. Using similar methods, Khayat and Hochstein (2018) pre-

sented observers with RSVP displays (100 ms display and 100ms ISI) of twelve

objects with different sizes, orientations, or brightness levels, then asked them

to discriminate which of two tests was a member of the set. Observers prefer-

entially selected tests near or at the mean regardless of whether the test was

actually present in the set and correctly rejected test stimuli outside the set

range, suggesting they automatically encoded both the mean and range of the set

even though there was no explicit instruction to do so, this was task-irrelevant,

and lead to incorrect performance. These mean and range effects extended to

familiar (Figure 6; Khayat & Hochstein, 2019) and novel (amoebas; Khayat

et al., 2021) object categories, further suggesting the average is akin to the

prototypical or canonical value of a bounded-range set.

Numerous additional studies have reported false alarms to the mean in tasks

probing individual object identification. Although not an exhaustive list, many

have already been described throughout this Element, such as for hue by Maule

and colleagues (2014), emotional expression (Haberman & Whitney, 2009),
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unfamiliar (de Fockert & Wolfenstein, 2009), and familiar faces (Neumann

et al., 2013). This implicit bias for the mean was found to persist in neglect

patients searching for a target on the left side of displays (Yamanashi Leib et al.,

2012), and was noted to be greater for collectivistic cultures (Peng et al., 2020).

Sama and colleagues’ (2021) recent findings that items within range of the set

but not actually present in the set were misidentified as present to the same

extent as items that were correctly identified as present further suggest individ-

ual items are not only inferred relative to their relations to the mean but also with

reference to the set’s range.

Studies demonstrating implicit representation of set properties even when

there is neither instruction to do so nor task-relevance strongly support the idea

that ensemble encoding happens incidentally, implicitly, and automatically.

Further, findings that observers falsely believe the average or prototype of

a set was presented suggest this sort of encoding may be unavoidable even if

it compromises performance. However, this does not necessarily mean ensem-

ble information is always more influential over individual item representations.

a b
In category: Mammals
Prototype:

Out of category:

Pres Abs

In Pro

In In

Pro In

In Out

OutPro

0 50 100
Accuracy

W
hi

ch
 te

st
 w

as
 p

re
se

t?
Figure 6 (a) Observers were presented with RSVP sequences of familiar objects

drawn from a given category (e.g., mammals). (b) When deciding which of two

tests was present in the sequence, observers made more false alarms, incorrectly

choosing a prototypical object over an item that was present and within the

category (PresIn vs. AbsPro). A combination of mean and range effects is

further illustrated over the increasing pattern of accurate responses for present

versus absent in-category tests (PresIn vs. AbsIn), present prototypical tests

versus absent in-category tests (PresPro vs. AbsIn), present in-category tests

versus absent out-of-category tests (PresIn vs. AbsOut), and present

prototypical tests versus absent out-of-category tests (PresPro vs. AbsOut).
Source: Adapted from Khayat and Hochstein, 2019
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Along these lines, in Section 5.6, we elaborate on the possibility that ensemble

encoding and individual item representation are utilized in a perceptually intel-

ligent manner balancing demands for capacity and fidelity.

A complete understanding of ensemble encoding is challenged to account for

this collection of theoretical questions. Results so far favor a hierarchically

distributed network, qualitatively distinct from more well-understood focused-

attentional processing. Although specific contributions of individual items seem

to vary circumstantially and set representations are not a direct product of

constituent items, there is at least some link between individual and ensemble

representations. Finally, it seems ensemble encoding is ubiquitous and even

obligatory, yet it is unclear under what conditions summary representations are

accessed or directly influential in perceptual processing. Overall, ensemble

encoding is best understood in terms of rapid, automatic global attention

mechanisms retaining information at multiple levels of abstraction without

requiring individual element perception.

3.5. RHT

Theoretical accounts discussed so far have all been targeted to explain a specific

set of issues. As introduced in Section 1.2, we propose ensemble encoding is

best understood within the framework of the RHT (Hochstein &Ahissar, 2002).

Importantly, we are not arguing against other theoretical accounts discussed, but

in favor of RHT as a broad, all-encompassing account. Importantly, most

theoretical explanations start with the assumption information is processed

and accessed in a feedforward, hierarchical manner, with low-level properties

represented early on, and higher-order properties, objects, and categories

abstracted over later stages of processing. In contrast, RHT (Figure 7) proposes

explicit perception starts at these later, higher-level stages of processing, with

hierarchical feedforward processing occurring implicitly. Explicit perception of

lower-level properties requiring focused attention is accomplished by reversing

this hierarchy to access representations implicitly constructed at earlier stages.

Setting the access point of conscious perception at the top of the hierarchy

allows for a straightforward explanation of “seeing the forest before the trees,”

or rapid summary perception.

In the context of RHT, ensemble processing collects low-cortical-level infor-

mation into higher-level, large receptive field representations, disregarding

details to represent object types and categories. Rapid conscious perception

reflects this higher-level categorical representation, maintained as a condensed

summary in working memory, immediately available to conscious perception,

and therefore reportable. However, lower-level detailed information from
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which it is built is no longer retained and must be actively individuated by

reversing the hierarchy.

The question of domain general versus specific ensemble processing dis-

cussed in Section 3.1 can be reframed as a matter of when in the implicit

feedforward hierarchy information was initially accrued and the extent to

which the hierarchy must be reversed to retrieve relevant aspects. In this

view, it is not surprising that studies have repeatedly found correlations between

observers’ abilities to average low-level features in simple displays and higher-

level categorical information, but disparate results for low- and high-level sum-

maries. Although the average representation is accessed in all cases, correlations

occur during common-level processing in the initial feedforward implicit sweep.

Stimulus

Figure 7 Classical Hierarchy and Reverse Hierarchy Theory. Classically, the

visual system was seen as a hierarchy such that low-level area neurons receive

visual input and represent simple features, their outputs are integrated over

successive cortical levels, and gradually generalized over spatial parameters to

ultimately represent global features and categories. Reverse hierarchy theory

instead proposes this forward hierarchy acts implicitly, with explicit perception

beginning at high-level cortex, representing the gist of the scene on the basis of

a first-order approximate integration of low-level input. Later, explicit

perception returns to lower areas via feedback connections to integrate detailed

information into conscious “vision-with-scrutiny.”
Source: Adapted from Hochstein and Ahissar, 2002
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Reverse hierarchy theory also helps to reconcile seemingly discrepant reports

of correlated performance for explicit and implicit measures of mean and

variance, versus uncorrelated performance in numerosity and mean estima-

tion and mean numerosity and variability. Whereas the hierarchy must be

reversed to recover numerosity information distinct from ensemble represen-

tations, mean and variance information can be accessed directly from the

higher-level summaries (see Anobile et al., 2014). Finally, reports of uncor-

related estimates for high-level set representations likely arise from having to

reverse-navigate the hierarchy to untangle different characteristics of com-

plex sets versus correlated performance when quickly accessing basic ensem-

ble properties. These conclusions also align with reports of limited capacity

for representing one feature from one set and a different feature from another

set, different statistical descriptors from multiple sets, but parallel access

within the same set (Section 2.6).

In the context of RHT, the question of whether qualitatively different mech-

anisms are involved in ensemble versus individual object representation

(Section 3.2.1) also becomes a question of when information is accessed.

Ensembles hierarchically generated over implicit feedforward processing can

be accessed rapidly, whereas explicit feedback processing is necessary to

recover constituent individual item details retained with varying levels of

precision depending on the conditions under which they were encoded. In this

view, it seems more parsimonious that all or most elements are encoded in

a rudimentary manner, versus an explicit bottom-up selection process that

purposefully subsamples and encodes individual objects to pass on to

a secondary averaging mechanism. Furthermore, having to engage explicit

feedback processing to recover details encoded during earlier feedforward

implicit processing stages not only helps to explain why numerous studies

have reported superior performance in averaging versus membership tasks but

why individual item discrimination is not a function of the number of items

sampled in simulated performance. A high-level representation accumulated

over implicit feedforward processing also fits with findings discussed in

Section 3.2.2 that increasing the number of items in the ensemble leads to

more precise ensemble representations, and with theoretical accounts such as

Baek and Chong’s (2020a) distributed attention model. This high-level repre-

sentation persists even when the hierarchy cannot be reversed for explicit access

to individual representations (Section 3.2.3), such as when focused attention is

withdrawn, depleted, or conscious perception of individual objects is otherwise

prevented. This implicit feedforward and explicit feedback determination aids

in understanding the sparing of ensemble perception from deficits seen in

conditions such as neglect and ASD.
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Reverse hierarchy theory proposes ensemble representations are constructed

over feedforward implicit processing, making the perception of constituent

individual elements unnecessary, but not necessarily uninfluential. In line

with findings discussed in Section 3.3, elements crowded from perceptual

awareness are included in ensemble representations, but not explicitly recover-

able when the hierarchy is reversed. Similarly, the retinal image of the ensemble

is subject to context-based rescaling over implicit feedforward processing. It is

also parsimonious to assume when initial encoding of individual items is biased

such that some are encoded more precisely, foveally, or selectively attended,

their contribution to the overall ensemble representation may be amplified, but

items too dissimilar are not integrated into this later-stage robust representation.

Finally, ensemble representations are directly accessed, without the need to

reverse the hierarchy to mathematically combine separate representations of

sum and quantity.

Although high-level ensemble representations are obligatory (Section 3.4), as

the starting point of conscious perception in our framework, it is often possible

to retrieve information about at least some individual elements. As discussed

further in Section 5.6, intelligent perceptual strategies should allow for this

option of fidelity when resources are available and performance would benefit.

Yet, individual representations are not as robust when reverse-accessed com-

pared to higher-order ensemble descriptors. As discussed further in Section 5.4,

this greater reliance on higher-level ensemble representation likely underlies

our ability to perceive the surrounding environment as complete and coherent

versus a bombardment of discrete, discordant, bits. Although false alarms to the

mean and other ensemble effects that skew individual item perception can be

seen as “detrimental” to veridical performance, this sort of global processing

allows for the perception of information in context. Perception naturally unfolds

within the context of our surroundings. Therefore, conscious perception should

logically be grounded in contextual representations.

Overall, RHT helps to bridge many gaps in our understanding of how

ensemble encoding is accomplished, resolving numerous seemingly discrepant

results. In addition to this theoretical framework, we next discuss plausible

neural mechanisms for ensemble encoding.

4 Neural Mechanisms

Reverse hierarchy theory provides a cohesive, neurally plausible description of

ensemble encoding. Before discussing potential neural models, we briefly

review attempts to “localize” ensemble encoding in the brain. The lack of

definitive results is not surprising if ensemble encoding is understood in the
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context of a distributed, hierarchical, bidirectional processing network. Along

these lines, we turn to a discussion of developing population-coding models of

ensemble encoding.

4.1 Neuroimaging

The neural substrates involved in ensemble representations remain poorly

understood. Although Cant and Xu (2012) localized adaptation activation

specific to photos of “ensembles” (e.g., fruit) different from surface textures

with similar low-level properties to the parahippocampal cortex, their study did

not include a measure of ensemble encoding. Therefore, results can only be

interpreted as evidence for unique activation in global processing of sets of

objects versus lower-level textural processing. In a subsequent behavioral study

also without a measure of ensemble encoding, changing unattended features of

sets impaired observers’ abilities to classify the overall set category based on an

attended feature, but not to classify the category of a single stimulus that also

varied on an irrelevant feature (Cant et al., 2015). In a later fMRI adaptation

paradigm, manipulations of density and ratio had no effect on this parahippo-

campal area, but activation was modulated by shape and surface properties of

individual elements (Cant & Xu, 2017). Although these findings align with

reports that texture ensembles selectively activate PPA (e.g., Park & Park,

2017), they are somewhat contrary to reports of improvements of numeric

averaging with transcranial magnetic stimulation of parietal cortex (Brezis

et al., 2016). Importantly, it will be necessary for future studies to include

a task confirming ensemble encoding, as well as to explicitly distinguish

between the present discussion of ensemble encoding and the established

literature on texture perception.

One recent study by Im and colleagues (2021) directly compared set versus

individual object processing using magnetoencephalography (MEG). When

observers viewed two sets of four faces with different emotions or two individ-

ual faces with different emotions and chose which set or individual to avoid,

distinct patterns of earlier dorsal activation for groups and later ventral activa-

tion for single faces were observed. These results add to previous proposals

(e.g., Ariely, 2001), suggesting dorsal involvement in rapid, parallel-processing

of sets, qualitatively distinct from ventral mechanisms involved in individual

object encoding. Another recent study by Tark and colleagues (2021) further

demonstrated a range of responses selective for average versus item orientation

as a function of task-relevance, ranging from early and extrastriate to later

frontal regions. Although several factors such as motor response modulated

the robustness of these effects, findings support the proposal that ensembles are
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encoded from pooled population signals at multiple levels throughout the visual

information processing hierarchy.

Overall, attempts to localize cortical regions involved in ensemble encoding

are inconclusive, likely because ensembles are encoded in a hierarchical man-

ner, over the course of feedforward implicit processing. We suggest a promising

route for future studies is to selectively engage implicit feedforward and explicit

feedback processing to allow for the classification of unique ensemble versus

single-item encoding.

4.2 Population Coding

Several theoretical models have been proposed to account for performance on

a range of different ensemble tasks (Section 3). However, few have explicated

underlying neural substrates or implemented computational models. Another

promising direction for characterizing the neural underpinnings of ensemble

perception is to derive these representations from known basic mechanisms of

neural coding, the population responses of feature-selective neurons.

Established by Hubel and Wiesel’s (1959, 1962) seminal work, neurons of

sensory cortical regions are selectively tuned to particular feature values.

Usually, neurons respond preferentially over a range of values, such that curves

can be obtained by measuring the neuron’s response as a function of stimulus

feature values. In simple cases, the tuning function is approximated by

a unimodal function with its peak at the neuron’s “preferred” feature value.

Measuring various neuronal responses within the same receptive field (RF)

returns tuning curves with peaks at different feature values, describing a broad

spectrum of feature preferences. When a stimulus is presented within a given

RF, the responses of neurons within the RF are modulated in accordance with

their tuning curves and this distribution of responses is the population neural

code. Various rules can be applied to decode a single feature value from the

population response, such as peak activation (e.g., Yantis & Abrams, 2014),

vectorization (e.g., Georgopoulos et al., 1986), and whole population Bayesian

decoding (e.g., Ma et al., 2006).

Given ubiquity across modalities and feature spaces, population coding is

a straightforward means for building a broad range of ensemble representa-

tions. A handful of previous studies have described how population encoding

may theoretically account for ensemble encoding. Haberman and Whitney

(2012) briefly outlined a plausible neural mechanism to achieve joint popula-

tion code for spatial ensembles through pooling of multiple responses from

local populations with small RF’s by neurons with large RF’s. As RF size

tends to steadily increase from lower to higher levels of neural processing,
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spatial pooling and ensemble representation appear to be natural results of

feedforward processing. Brezis and colleagues (2018) further suggested

a computational neural-network model of averaging using joint population

code based on observers’ performance averaging over RSVP-sequences of

two-digit numbers (Section 2.1.8). Each number produced a noisy Gaussian-

shaped population response in the first encoding layer (L1). A second layer

(L2) then decoded the average, such that each L2 neuron was also a number-

selective neuron with a broad tuning curve determining the synaptic weights

of each L1 neuron. Therefore, the output of each L2 neuron was the sum of

L1 neurons’ excitations multiplied by their synaptic weights, and average

number was decoded as L2 population peak activation. This model accounted

for behavioral data in a number averaging task but has yet to be extended to

other features or statistical properties.

Whereas Brezis et al.’s (2018)model uses a pooling layer only for decoding the

average from the joint response of local number-selective neural populations,

Utochkin, Choi, and Chong (in review) shifted the focus to the pooled population

response as the actual neural representation of the ensemble (Figure 8). Their

model provides a simple explanation for how themean feature is encoded directly

from feedforward-pooling of the whole display by a large RF. The width of the

pooled response can be directly decoded as variability, and the entire shape of the

pooled population code is isomorphous to the distribution of the physical stimulus

properties, conveying a range of useful information in addition to the mean using

the same code, without a devoted decoding mechanism to readout the shape.

Utochkin and colleagues’ population response model successfully predicted

performance previously reported in a range of 2AFC orientation (Dakin, 2001;

Solomon, 2010; Yashiro et al., 2020), size (Baek & Chong, 2020a; Solomon

et al., 2011), motion direction (Watamaniuk et al., 1989), and color (Virtanen

et al., 2020) averaging tasks, method of adjustment orientation (Epstein et al.,

2020; Utochkin & Brady, 2020) and size (Khvostov & Utochkin, 2019; Kim &

Chong, 2020) averaging tasks, orientation variance discrimination tasks (Jeong

& Chong, 2021), as well as implicit feature distribution learning based on local

changes of the underlying probability density (Chetverikov et al., 2016, 2017;

Hansmann-Roth et al., 2021). Along these lines, AAEs to summary statistics

(Section 2.5) can also be explained via shifts in joint population codes induced

by neural fatigue after long exposure to an ensemble adaptor.

Utochkin and colleagues’ population response model provides a neurally

plausible basis for RHT. Hierarchical, implicit feedforward processing in bot-

tom layers is directly readout at higher levels, and explicit feedback connections

not only access but can reweight bottom layer representations. Baek and Chong

(2020b) suggest an important extension of a population-based neural
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Figure 8 Principal architecture of Utochkin and colleagues’ population-coding model, illustrating responses of two layers to a set of four

differently oriented lines. The bottom layer produces four noisy population responses in separate small RFs (large colored circles). Top layer

neurons pool signals from all local RF’s in accordance with their synaptic weights (numbers in four smaller colored circles) and return the

normalized average (numbers in large unfilled circles). The top layer distribution of output signals is the model’s neural representation of the

ensemble.
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mechanism where attention is distributed by applying a broadly tuned Gaussian

filter to the joint population code, favoring the overall mean representation and

effectively “washing-out” individual representations. In contrast, attention is

focused by applying a sharply tuned Gaussian filter to a local population

response, biasing the representation of an attended item. Utochkin and col-

leagues’ model also provides a straightforward mechanism of easy outlier

detection and robust averaging via detection of discontinuity in the population

code if the outlier is strongly dissimilar from other items, or by feedback

normalization of population responses to individual stimuli from joint popula-

tion activity. “False-alarms to the mean” result from the population response

smoothing the differences between the underlying distributions and thus boost-

ing representation in the center. Furthermore, the joint population code also

provides a straightforward mechanistic explanation of the “math” behind esti-

mation of ensemble statistics, where mean is directly calculated.

Overall, the lack of concrete findings regarding the neural substrates of ensem-

ble encoding is not surprising in the context of our RHT/pooled-population

account. Distributed, hierarchical encoding in lower layers accrued over implicit

feedforward processing is accessed directly from pooled responses in higher

layers. Explicit feedback to lower layers is necessary to retrieve individual

representations, which are modulated by the fidelity of encoding and feedback

from higher layers.

5 Foundational Processing

Given our account can effectively explain a range of findings in the ensemble

perception literature, we next consider the implications and applications of this

theoretical and mechanistic framework. Our view implies ensemble encoding

emerges as a natural process from implicit feedforward processing within

a limited-capacity system, distinct from, but influenced by processes governing

individual item encoding. Somewhat contrary to previous proposals, our account

predicts ensemble encoding is a fundamental process versus a supplementary

process to overcome focused attentional processing limitations. Gist-based

ensemble perception is the foundation of all sensory processing, necessary for

detailed encoding, canceling noise contaminating individual item representations,

allowing for efficient storage, categorization, segmentation, and perceptual learn-

ing of incoming sensory information while maintaining spatiotemporal percep-

tual stability. In contrast to traditional theoretical proposals starting with object

features, we argue ensemble properties are the building blocks of perception,

permitting the majority of the world to be rapidly interpreted, only later to be

investigated in detail by more effortful, explicit, focused-attentional processing.
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5.1 Rapid and Efficient

5.1.1 Gist

Gist perception is a first approximation or best guess at integrating bottom-up

information, prior to checking for inner consistency or confirmation from prior

knowledge (e.g., Hochstein, 2020). Though we often believe we know the

details of a scene, there is a vast amount of evidence that we miss most and

require prolonged scrutiny to build a more individuated representation of scene

elements (e.g., Cohen & Chun, 2017). Summarizing complex scenes by rapidly

forming statistical descriptions of sets of similar items allows for economical

description without individuating each member (Ariely, 2001). Our account

divides perception into two categories: (1) rapid, vision-at-a-glance global

perception of the scene accrued over implicit feedforward processing and

readout directly from higher-layer pooled population responses, versus (2)

slower, vision-with-scrutiny, depending on explicit feedback processing via

serial scanning of local areas or top-down reverse hierarchy return to lower

cortical areas where details are represented (Hochstein & Ahissar, 2002).

There is broad evidence for this dichotomy, beginning with the discrepancy

between severe limits to attention and a rich, detailed representation of the

visual scene. The span of apprehension is limited to three to four items

(Woodworth, 1938), and change detection can take many seconds (Rensink

et al., 1997). Yet, gist is rapidly perceived (e.g., Potter & Faulconer, 1975;

Torralba et al., 2006) and instances of a category can be detected with little cost

to simultaneous attention-demanding tasks (Li et al., 2002; Thorpe et al., 1996).

This dichotomy is repeated between the speed of parallel visual search for single

features independent of set size, versus serial search for conjunctions of fea-

tures, or absent features, linearly dependent on set size (Treisman & Gelade,

1980; Treisman & Gormican, 1988).

Recently pointed out by Raidvee and colleagues (2020), Kahneman (2011)

advanced an intriguing idea about constraints imposed upon visual processing,

proposing the average length of randomly positioned lines can be judged with

considerable accuracy, but the total length of these lines cannot (in line with

findings discussed in Sections 3.3.5 and 4.2). Accordingly, the mean feature of

a collection of similar geometric figures can be computed by an evolutionarily

old system producing rapid, parallel, and automatic analysis with only the final

product accessible to conscious awareness. An evolutionarily more recent

system performs slowly, using sequential processes typical of deliberate think-

ing. Unlike accounts of ensemble encoding considering how summary repre-

sentations may subserve processes responsible for individual item

representations (e.g., Alvarez, 2011), or be carried out by separate neural
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substrates (e.g., Cohen et al., 2016), our account similarly starts with gist-based

ensemble representation as the most basic, fundamental form of perception. In

line with Kahneman’s (2011) proposal, vision-with-scrutiny via focused atten-

tion is the supplemental process, facilitating goal-directed actions and high-

lighting salient targets which cannot happen unless basic, feedforward, implicit

processing has given rise to ensemble gist-based representation.

5.1.2 Noise Cancellation

Whereas many computational attempts to represent visual information aim to

produce exact replicas of the input stimulus and minimize information loss, the

human visual system is not equipped with the processing or metabolic capacity

for such intensive encoding. Ariely (2001) proposed the system instead relies on

smart forms of representations like statistical encoding of sets to extract just

enough to preserve the important information needed to successfully maintain

stable perception necessary to interact within the surrounding environment.

Alvarez (2011) further proposed combining samples acts to reduce error by

averaging-out independent noise.

Such proposals are well grounded in earlier observations of the visual

system’s structure and function (Section 1.1), and in line with later findings

2AFC speed estimates relative to a standard stimulus speed were more precise

over six smaller patches versus a single larger patch (Verghese & Stone, 1996)

and discriminations of average brightness were more precise for sets of twelve

discs versus single discs (Takano & Kimura, 2020). Sun and Chong (2020)

provided empirical evidence averaging acts to reduce noise. Observers’ judg-

ments of which side of a display of four different faces relative to a single

neutral face on the opposite side of the display appeared angrier were less

impaired by inverting displays than judgments between two single faces. In

line with Baek and Chong’s (2020a) proposal (Section 3.2.2; Figure 3d–f), noise

cancellation is a natural result of the pooled population response. Similarly, in

our framework, input noise is averaged out in the pooled population response

accumulated over implicit feedforward processing. The population response

therefore provides a “compressed” summary representation of the ensemble

that can be rapidly accessed and is less corrupted by non-systematic noise

inherent in lower-level item representations. As discussed further in

Section 5.7.2, this efficient noise-canceling compression can even be extended

to real-world situations where multiple independent estimates are combined

within limited pools of observers.

Relying on ensemble representations resulting from pooled population

responses accumulated over implicit feedforward processing allows for rapid
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perceptions of the gist of the scene. We argue these higher-level representations

are the starting point of conscious perception, such that rapid access to ensemble

and gist information allows us to quickly and efficiently see the “forest”without

having to expend the energy to reverse the hierarchy and reconstruct it based on

noisy individual “trees.”

5.2 Working Memory

Storing information in working memory is a highly demanding capacity-limited

process (Cowan, 2001; Luck & Vogel, 1997). Increasing the number of to-be-

stored items quickly leads to substantial information loss (Wilken &Ma, 2004).

Ensemble representation has typically been thought of as a tool to cope with

these severe limitations (e.g., Alvarez, 2011). Instead, we propose it is

a fundamental form of hierarchical representation, driving rapid, gist-based

conscious perception well before individual item representations can be expli-

citly accessed. There is mounting evidence individual item representations are

recovered as a function of ensemble properties, even when this may lead to false

memories. Warping toward top-level ensemble representations when retrieving

noisily encoded lower-level item representations is a means of perceiving

individual objects in context.

5.2.1 Hierarchical Encoding

There is a growing collection of evidence that ensemble representations affect

memories of constituent items. Brady and Alvarez (2011) asked observers to

memorize the sizes of two of three color-defined spatially intermixed sets of three

dots each, then adjust the size of a dot to the remembered size in a given location.

Observers’memories of the same physically sized dots were systematically biased

toward the average size of all three dots of a particular color, but onlywhen they had

to ignore a third color set. Although results were interpreted as observers averaging

only when color was task-relevant, set size also decreased when only two sets were

presented (Section 5.6). Lew and Vul (2013, 2015) similarly found observers

remembered locations of up to eight objects organized into spatially distinct clusters

with bias toward the central cluster location, such that errors were more correlated

with the central location than actual item locations. Walker and Vul (2014) reported

a somewhat related “cheerleader effect,” with individual faces rated as more

attractive when presented in groups of up to sixteen faces.

There is also evidence top-down influence of ensemble representations on

individual object recall is not restricted to bias toward the mean. Utochkin and

Brady (2020) presented observers with displays of four triangles and asked

them to adjust a test to the orientation of a single triangle in a pre-cued location,
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a single triangle at a post-cued location, and the mean orientation of all four

triangles. Not only was memory for individual orientations biased toward the

mean, but the precision of memory for an individual item increased with

decreasing variance and errors more skewed toward mean orientation with

narrower ranges. Son and colleagues (2020) reported similar effects for obser-

vers’ memories of individual item orientation in displays of five tilted bars and

color in displays of four color squares. Although error for items within the same

cluster was affected by similarity, results may be more indicative of outlier

detection (Section 5.3.2) given clusters always consisted of one set of up to four

objects and a second set of only one object.

Together, findings are consistent with hierarchical coding in working mem-

ory with information about a set of remembered items represented at several

levels. Along these lines, Brady and Alvarez (2015) found patterns of errors for

item color memory in displays of up to six color circles were best accounted for

by a model allowing for representations at multiple levels of abstraction. Given

the limits of workingmemory, this sort of multilevel storage is useful for rapidly

accessing higher-level gist-based representations especially when it is not

necessary to retrieve details. However, as discussed in Section 4.3.2, and

elaborated in Section 5.2.3, this strategy becomes detrimental when fidelity is

necessary for remembering individual items.

5.2.3 False Memories and Bias

Perceiving individual objects in context is generally beneficial for coherent,

stable perception. However, findings such as “false alarms” to the mean

(Section 3.4.2) raise the important question of whether ensemble encoding

may ultimately underlie false memories. False memories were originally empir-

ically studied by Deese (1959), later popularized by Roediger and McDermott

(1995), using what has come to be called the Deese-Roediger-McDermott

(DRM) paradigm. Participants are presented with lists of words and then

asked to report words that were present. Typical reports included related but

absent words participants were as certain as being presented as other correctly

recalled words, especially if the absent word was prototypical of the set

(Pardilla-Delgado & Payne, 2017). Such false memories may also occur in

a more abstract manner. For example, “Mandela Effects,” named after Fiona

Broome’s false memory of Nelson Mandela dying in prison in the 1980s, was

supposedly shared by many other strangers around the world. Similarly, many

people (incorrectly) insist the Monopoly Man wears a monocle. Such “Visual

Mandela Effects” have only recently become the subject of empirical investi-

gations (e.g., Prasad & Bainbridge, 2021). However, these and more widely
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studied “DRM false memories” bear at least some resemblance to findings that

observers incorrectly remember an item representing the average value of a set

of objects being present in sequences of familiar and novel objects

(Section 3.4.2) in that the recall of a specific event is biased toward higher-

level ensemble context in which it was experienced.

This implicit categorical bias also may play an important role in interpreting

the testimonies of victims in a post “#MeToo” era. Importantly, memories of

items and events may be “falsely” warped toward a prototypical value, but this

has no bearing on whether the item was actually present or the event occurred.

False alarms to the prototype may also help explain implicit racial and gender

biases. For example, when observers viewed a sequence of photographs of ten

black and ten white faces in random order and indicated which was present in

a set of eighty faces, they made fewer false alarms and more correct identifica-

tions for faces from their own race (Malpass & Kravitz, 1969). Future studies

may verify this “own race effect,” as a case of warping to the mean of a race of

which one is not an exemplar.

Acknowledging and better understanding such biases may even encourage

racial and gender equality in our own professions. A study of longitudinal data

from the annual meeting of the Vision Sciences Society by Cooper and Radonjić
(2016) revealed a 1:8 ratio of female:male nominees for Young Investigator

Awards from 2007 to 2015 despite respective ratios of approximately 1:2 and

1:3 in postdoctoral and regular society members. Perhaps individuals were

nominated based on similarity to a prototypical candidate, largely constructed

from previous predominantly male exemplars. As discussed further in

Section 5.4, perceptual learning may underlie both the origin of and solution

to such biases, as information accumulated about exemplars shapes perceptions.

From basic-level properties to abstract social constructs, memories and

moment-to-moment perceptions are grounded in higher-level categorical and

gist-based representations. In our framework, these representations anchor

conscious perception, providing the context in which to evaluate individual

objects and events. This sort of high-level bias not only warps individual

representations toward set properties but can be extended to more complex

categorical prototypes.

5.3 Perceptual Organization

Ensemble representations allow for a quick, efficient organization of informa-

tion into meaningful chunks. In our framework, these gist-based representations

are the building blocks of perception, with feedback contextual influence on

how we perceive individual objects and events. This account of ensemble
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encoding promises to be an extremely useful tool for explaining how pooled

population responses may organize incoming sensory signals into meaningful

perceptual units.

5.3.1 Categorization

Utochkin (2015) proposed a simple ensemble-based rule to quickly parse

intermixed objects into categories. Given information about the whole feature

distribution is available in the joint population code, the shape of this distri-

bution can be categorized by peaks where similar features are concentrated

and valleys where the range of reasonable feature variation within a category

ends (Figure 9). If features are distributed smoothly along a range with no

substantial discontinuity, the ensemble likely represents a single category

(Figure 9a). However, if the distribution has several distinct peaks, the number

of peaks corresponds to the number of distinct categories (Figure 9b). In this

framework, the underlying mechanism of categorization depends on proto-

types (mean) and boundaries (range). A plausible neural basis for such

categorization is given by single-cell activity of neurons selective to motion

direction recorded in monkeys watching two overlapping textures moving in

two different directions (Treue et al., 2000). When the angular difference

Ensemble

Individuals

a b c

Figure 9 Joint population code for categorization and outlier detection. (a)

When features are smoothly distributed over a range, the joint population

response contains a single peak representing a single category. (b) When the

distribution is discontinuous, it will have multiple peaks corresponding to the

number of distinct categories (two in this example). (c) When there is a wide

valley between multiple responses and a single outlier response, the set

population code reflects the mean of the distribution discounting the outlier,

which is represented by a separate population code.
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between directions was relatively small, the shape of the population response

was a single peak with a maximum at the average direction between the

physically presented directions. However, when the angular separation

became large, the population response split into two peaks corresponding to

the physically presented directions.

There is mounting behavioral evidence for such “split peak” effects of

feature distributions on subset categorization. For example, Utochkin and

Yurevich (2016) (replicated by Cho & Chong, 2019) demonstrated odd-one-

out visual search for size or orientation is modulated by distractor distribution.

Observers were faster finding a singleton target if distractors had a smooth

distribution versus sharp two- or three-peak distributions. In a subsequent

study, Utochkin and colleagues (2018) briefly presented observers with

patches of sixty-four line segments of different lengths and orientations.

Opposite halves of the display were composed of elements from identical

distributions but different correlations between distributions. Discriminations

of whether the top or bottom of the display had a given relationship and

whether the boundary between the two subpatches was horizontal or vertical

were poor unless both distributions of length and orientation had two-peaks,

suggesting two-peak distributions supported categorical segmentation when

observers could pick only long lines (ignoring short ones) and compare

average orientations within this subset. Im and colleagues (2021) also

reported when observers were briefly shown a set of sixteen uniquely sized

dots and asked to categorize a probe as being large or small relative to set

median size, categorization was more accurate if the distribution was two-

peaked. Furthermore, when observers performed an attentionally demanding

oddball detection task at fixation, the amplitude and latency of the visual

mismatch negativity (vMMN; an ERP component indexing automatic oddball

detection) were modulated by the orientation and length distributions of

background elements could that suddenly change sign over the course of trials

(Khvostov et al., 2021). These findings provide converging evidence for

automatic ensemble-based categorization.

Cha and colleagues (2018) demonstrated categorical discriminability can

even modulate visual awareness. Observers were stereoscopically presented

with a display of dots in a given color to one eye and a display of dots in

a different color to the other eye, and reported how many colors they

perceived at any given time. When the colors were similar, participants

reported both colors for a longer proportion of time, but were more prone

to perceiving only one color when colors became more dissimilar. These

patterns suggest the categorical similarity of colors drives fused perception,

and categorical dissimilarity induces binocular rivalry.
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5.3.2 Outlier Detection

Directly related to categorization and segmentation, ensemble encoding may

play a fundamental role in outlier detection. Outliers differing greatly from

other elements “pops-out,” and are detected rapidly independent of the number

of other elements (Treisman & Gelade, 1980). As discussed in Section 3.3.4,

such outliers are generally discounted in computations of ensemble representa-

tions, which may also serve as a basis for detecting outliers.

Hochstein and colleagues (2018) directly tested the relationship between

averaging and outlier detection. Observers viewed two arrays of heteroge-

neously oriented bars with different mean orientations and/or with one array

containing a bar with an outlier orientation and (1) discriminated which had the

average tilt was more clockwise, or (2) which contained an orientation outlier.

Performance in the mean and outlier detection tasks was assessed as a function

of array variance, the difference in mean orientation between the arrays, and

outlier orientation. Overall, performance in the mean task was governed by the

difference in mean orientations between the two arrays, independently of the

variances, contrary to earlier findings for much smaller (Rosenholtz, 2001).

Furthermore, whereas participants could easily discriminate between the mean

orientations of arrays even when their distributions largely overlapped, outlier

detection performance depended only on the distance of the outlier from the

edge of the array. Taken together, these patterns suggest variance only affects

outlier detection by determining the range of the set distribution and the outlier

must be clearly outside this range to be detected.

As demonstrated in Figure 9c, these characteristics of outlier detection are

consistent with the population code analysis (Section 4.2). In this example, the

joint population response has a vector sum at the veridical mean of the set only if

the outlier is discounted. This discounting is derived from the wide valley at

noise level between the responses to the set of counterclockwise orientations

and the response to the clockwise outlier. The depth of the valley depends only

on the distance of the outlier from the edge of the set’s range. A separate

population code for the outlier gives its “mean” as the single orientation.

In our framework, ensemble encoding is a crucial mechanism underlying

perceptual organization, rapid categorization, and pop out outlier detection.

Individual items must be similar enough in some dimension to be included in

the same pooled population response. Likewise, items outside the set’s range are

discounted from the pooled response and represented by a separate population

response. These higher-level ensemble representations act as the starting point

for conscious perception, actuating swift and efficient categorization and outlier

detection.
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5.4 Perceptual Learning and Stability

When discussing the relationships between ensemble encoding in categoriza-

tion, outlier detection, and exemplar representation, an understanding of how

ensemble information is accrued over time is an important consideration. Given

the structure and redundancy in the surrounding environment, ensemble encod-

ing provides scaffolding for making sense of the constant influx of sensory

information. Along these lines, several studies have investigated how the

stability of ensemble information over space and time influences perception.

Although perception is modulated by a constant interplay between observer

and environmental coordinate systems as we interact within our dynamic

surroundings, we nonetheless maintain a general sense of spatiotemporal sta-

bility. In our framework, ensemble representations stabilize perception by

minimizing disruption from noisy low-level individual item representations

and increasing gist-based predictability. If ensemble representations underlie

spatiotemporal stability, they should transfer over multiple spatial reference

frames. Corbett and Melcher (2014b) first demonstrated ensemble representa-

tions translate across eye movements, in retinotopic, spatiotopic, and hemi-

spheric reference frames, and even transfer interocularly. Observers adapted to

two side-by-side patches of differently sized circles with small and large mean

sizes while remaining centrally fixated and judged which of two subsequently

presented tests was larger in the retinotopic, spatiotopic, hemispheric, and

interocular conditions displayed in Figure 10. Across all conditions, an AAE

persisted such that observers judged the test dot presented in the region adapted

to the large mean size set as smaller than the same-sized test dot presented in the

small-mean-adapted region. Results provide strong support for the proposal that

ensemble representations anchor and unify perception fluctuating between

otherwise disparate spatial reference frames.

Studies by Gillen and Heath (2014a, b) extended our understanding of how

ensemble information guides perception over eye movements. Over hundreds of

trials, they asked participants to make prosaccades toward proximal, middle, and

distal targets or antisaccades to mirror locations on the opposite side of the

display. In the control condition, targets were either presented in different loca-

tions with equal frequency. In the proximal-weighted and distal-weighted condi-

tions, targets were presented five times more frequently in the proximal and distal

locations, respectively. Prosaccades were unaffected by unequal weightings,

suggesting they were veridically governed by retinotopic information, whereas

(relative to the control condition) antisaccades significantly undershot targets in

the proximal-weighted condition and overshot in the distal-weighted condition,

suggesting ensemble representations governed these volitional movements.
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These results help to explain how we can make veridical eye movements to

targets while also under the influence of a contextually driven representation of

the environment.

To examine how ensemble information may similarly influence the manner in

which information is perceived over time, Corbett and Melcher (2014b) next

presented observers with displays of sixty-four differently sized Gabors in ran-

dom horizontal orientations and asked them to search for a single target Gabor

tilted from vertical and indicate its clockwise or counterclockwise orientation.

Adaptation (1 min)

Top-up (2 s)

Test dots (250 ms)

Fixation (until response or 3 s)

Fixation shift

Retinotopic Spatiotopic MonocularBaseline Neither

Figure 10 Methods from Corbett and Melcher (2014b). Observers adapted to

two patches of dots, one with the larger mean size on the top and bottom of the

display. Then, while either maintaining central fixation or shifting fixation, they

determined which of two tests appeared larger. In the baseline condition,

fixation remained central, and tests appeared at the top and bottom of the

locations previously occupied by the adapting patches. In the retinotopic

condition, fixation shifted to the opposite side of the display and tests appeared

above and below the previous location of central fixation. In the spatiotopic

condition, fixation shifted to the opposite side of the screen and tests remained

in the spatial locations previously occupied by the adapting displays. In neither

condition, fixation shifted to the adapted side of the display and tests shifted to

the top and bottom of the vertical meridian. In themonocular condition, displays

were presented stereoscopically such that adapting patches were presented to

one eye and tests to the other eye, but both appeared to be centrally aligned.
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The mean size of the entire display either remained the same over several

consecutive trials (stable blocks) or changed on every trial (unstable blocks),

but individual Gabor sizes varied randomly on all trials. Not only did observers

correctly identify the tilt of the target faster as mean size became stable over time,

but they also made faster and fewer eye movements and shorter fixations com-

pared to unstable baseline trials. Further confirmation for this stability effect is

given by Manassi and colleagues’ (2017) findings that estimates of the mean

orientation of displays of nine Gabors were serially dependent (Section 5.7.2).

Tong and colleagues (2015) observed a similar effect of the stability of mean

luminance in displays ofmany square patches on the perception of patch variance.

Future studies will likely uncover links between statistical stability, the limited

temporal window over which ensemble information is updated (Section 2.3), and

the temporal dynamics of the implicit feedforward and explicit feedback process-

ing outlined in Section 3.5. Together, results suggest statistical stability allows for

rapid efficient outlier detection. Suddenly disrupting stability acts as an uncon-

scious signal of salient change outside the focus of attentional scrutiny, slowing

search for individual targets while the system recalibrates to global gist. Such

alertingmay underlie the feeling of “mindsight” (Rensink, 2004) where observers

sense a change without the corresponding visual experience.

This anchoring of perception to ensemble representations is likely a result of

perceptually learning the overall shape of internal feature probability distribu-

tions over time. Along these lines, Chetverikov and colleagues (2017) used an

array of differently oriented bars, asking participants to find an outlier orienta-

tion (Section 2.4.3). They trained using a consistent distribution of distractor

orientations, and an outlier target orientation over a streak of several trials, and

then tested learning by shifting the distractor distribution around a new mean

and redefining the target within the original distractor distribution. Target

detection speed slowed as a function of the current target orientation’s distance

from the mean of the prior distractor orientations, and this negative priming

effect on search speed generally followed the shape of the preceding distractor

distribution. When distractor distributions were bimodal, observers initially

performed as if they were uniform and needed more repetitions to show search

effects consistent with bimodal preceding distributions. Moerel and colleagues

(2016) also found observers initially relied most on parafoveal input when

discriminating whether a patch of sixty-three differently oriented Gabors was

more clockwise relative to the orientation of a homogeneously oriented refer-

ence patch, but estimates expanded peripherally over the course of learning.

Taken together, results suggest observers do not have strong initial priors and

quickly learn simple distributions, but can flexibly adjust representations to

more complex distributions as information accumulates over time.
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Within our framework, this sort of ensemble-based learning occurs at higher

cortical levels, guiding later, lower-level explicit feedback processing. One way

of localizing this sort of perceptual learning is by measuring the degree to which

effects are specific versus transferable. If learning modifies representations at

lower levels, effects will not transfer to different tasks accomplished by different

specific untrained neuronal populations. However, if learning happens at higher-

level broadly tuned population responses, effects should transfer to new tasks. To

our knowledge there has only been one investigation whether improvement from

ensemble perceptual learning transfers across tasks. Hochstein and Pavlovskaya

(2020) presented observers with two arrays of heterogeneously-oriented barswith

differentmean orientations and/or a bar with an outlier orientation and asked them

to discriminate the mean orientations or detect the outlier (Section 5.3.2).

Participants first performed one of the two tasks for several blocks, then switched

to the other task.As expected, training improved both accuracy and speed for both

mean discrimination and outlier detection. More importantly, reaction time

improvements in the first task transferred to the second task in all cases.

Although improvements in accuracy only transferred from outlier detection to

mean discrimination, results nonetheless provide some support for our proposal

that ensemble-based learning occurs at higher-level broadly tuned populations,

which feedback to influence subsequent lower-level processing.

Overall, this collection of work suggests ensemble encoding plays

a fundamental role in maintaining spatiotemporal stability. Given the con-

stantly changing retinal image, the visual system likely relies on learning

statistical regularities inherent in the surrounding environment to smoothly

sew perception together over space and time while allowing for the detection

of salient objects and events. Future studies will likely uncover more ways in

which the spatiotemporal stability of ensemble representations implicitly

governs our interactions with the surrounding environment.

5.5 Heuristic Representation

There is mounting evidence ensemble encoding is part of a broader set of

heuristics underlying our ability to rapidly make sense of the dynamic surround-

ing environment. Studies investigating, “What makes a set a set?” have helped

to link ensemble encoding to a larger class of information processing heuristics,

namely Gestalt Laws of Perceptual Organization (e.g., Wertheimer, 1923).

Along these lines, both ensemble encoding and Gestalt Laws predicate percep-

tion on parsimony and recurrent order in the physical world.

Im and Chong (2014) first explicated the link between these forms of heuris-

tic representation, demonstrating Gestalt grouping by spatial proximity and
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contrast facilitate average size encoding. Observers viewed displays of up to

five sets of five circles then estimated the average size of a probed subset. When

sets were spatially intermixed and only defined by contrast similarity (similar to

Brady & Alvarez, 2011), estimates of subset average size were less precise than

when sets were also spatially segregated (by proximity). Corbett (2017) next

tested the proposal that Gestalt grouping and perceptual averaging functionally

boost capacity of VSTM. Observers were presented with study displays of

sixteen dots (well beyond VSTM capacity) for either 500 ms or 5 s and asked

to memorize their sizes. Dots were organized into two large- and small-mean

size groups of eight defined solely by a Gestalt grouping factor (proximity,

similarity, connectedness, common region). Observers adjusted the sizes of six

tests to the remembered sizes in the corresponding study locations. In line with

previous findings for smaller set sizes defined by similarity and proximity

(Brady & Alvarez, 2011; Im & Chong, 2014), observers’ memories of individ-

ual dots were biased toward Gestalt-defined mean size such that the same size

test dot was remembered as larger when presented in the large versus small

Gestalt-defined mean size set. Also in line with Lew and Vul’s (2015) findings,

observers made more similar errors for test dots in the same versus different

Gestalt-defined sets. Finally, observers’ errors relative to the mean size of the

Gestalt-defined group in which a test dot was presented were significantly lower

than errors relative to the actual sizes of corresponding dots. Collectively,

results imply Gestalt grouping and perceptual averaging warp individual item

representations to minimize the error with which individual items are recalled.

Further support for the idea that ensembles are defined by grouping principles

is given by findings that observers ignore elements of spatially aligned contours

(good continuation) when estimating the average orientation of a patch of

elements (Cha & Chong, 2018). Along these lines, Akyuz and colleagues

(2018) demonstrated grouping by color similarity facilitates processing of

dynamic displays at the set level. Somewhat akin to tracking the movements

of soccer players, observers were less able to track the number of times any

colored circle “player” gained possession of a soccer ball over an entire group of

differently colored players than they were to count the possessions by a given

color team, and this ability improved when the same number of players were

grouped into fewer color teams with more individual members per team.

Overall, results provide support of our proposal that implicit feedforward

processing acts to capitalize on structure and redundancy, employing heuristic

grouping and statistical representation strategies. As outlined in Section 5.1.1,

this form of hierarchical representation allows for rapid gist-based perception,

accrued implicitly over feedforward processing to guide the explicit retrieval

and further encoding of incoming sensory information.
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5.6 “Smart” Perception

Although we propose higher-order gist-based ensemble information is the

starting point of conscious perception, it is not the sole factor. Parsimonious

perception should rely on the most relevant information available. As noted

throughout this Element, numerous studies of ensemble encoding have used

displays with only a few unique items. However, when individual item repre-

sentations are task-relevant and can be recovered from explicit feedback pro-

cessing, intelligent perception should instead be reliant on this detailed

information versus more immediately available ensemble representations.

New evidence suggests heuristic perceptual strategies are indeed employed

in such a “smart” manner. Using an established ERP-index of VSTM capacity,

the contralateral delay activity (CDA), Corbett and colleagues (osf.io/e3dvq;

Figure 11) explicitly tested how Gestalt-grouping and perceptual averaging

affect memory capacity as a function of whether the to-be-remembered infor-

mation exceeds the typical four-item limit. Although CDA amplitude increases

as the set size of a to-be-remembered display increases (Vogel & Machizawa,

2004), this has typically been used with displays of only a few items. Adapting

Corbett’s (2017) methods into a CDA paradigm not only allowed for a critical

test of whether grouping and averaging decrease VSTM load, but also whether

this occurs even when it would not be beneficial. Preliminary results replicate

Corbett’s (2017) previous behavioral findings with individual items in displays

of sixteen dots remembered as a function of Gestalt-group mean size. However,

this behavioral index was not observed for displays of only four dots.

Furthermore, CDA amplitudes significantly decreased for grouped versus

ungrouped displays of sixteen dots but not for grouped versus ungrouped

displays of four dots, and CDA amplitudes for grouped displays of sixteen

dots were significantly lower than for corresponding groups of only four dots.

Convergent behavioral and EEG results provide strong evidence grouping and

averaging function in an intelligent manner, maximizing information in com-

pressed representations when capacity for individual representation is exceeded

but not at the expense of fidelity when individual representations can be

explicitly recovered.

These results suggest ensemble encoding is part of a “smart” perceptual

processing system, mediating between the needs to attend to salient objects

and events while maintaining a sense of perceptual stability. Importantly,

these considerations must be factored into the design of future studies of

ensemble encoding and results from studies using displays of only a few

unique items should not be considered as indicative of ensemble encoding.

These findings may also account for several discrepant findings, for example
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change detection performance using sets of four colored circles or tilted

Gabors was not well approximated by a model that relies on ensemble encod-

ing versus individual objects summation (Harrison et al., 2021). In summary,

we assert that reshaping how ensemble representations are involved in per-

ceptual processing and how investigations are executed are critical issues to be

addressed in all future work.
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Figure 11 Preliminary results from Corbett and colleagues (osf.io/e3dvq:).

Observers adjusted the size of a test to the remembered size in the corresponding

study display location. Sets contained either four or sixteen dots, ungrouped, or

grouped into two large- and small-mean size sets by proximity, similarity, or

common region. Tests in displays of sixteen dots were remembered as

a function of Gestalt-group mean size, but adjustments for test dots in display of

four dots demonstrated no such mean size bias. Furthermore, CDA amplitudes

were lower for grouped versus ungrouped displays of sixteen dots, and CDA

amplitudes for displays of sixteen dots were significantly lower than for

corresponding Gestalt groups of only four dots.
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5.7 Applied

Besides considerable theoretical implications for human information process-

ing, findings from studies of ensemble encoding can also be abstracted to

several real-world situations. As the access point for conscious perception,

ensemble representations are an intuitive, rapid means of communicating com-

plex information. Greater reliance on this gist-based heuristic processing may

even explain experts’ versus algorithms’ superior abilities to rapidly detect

targets in safety-critical situations.

5.7.1 Data Visualization

Ensemble representations convey a large amount of useful information about sets

and are becoming increasingly important for visualization as general statistical

practices extend beyond point and interval estimates to whole distributions. Cui

and Liu (2021) comprehensively reviewed how difficult-to-understand statistical

concepts may be more easily captured in ensemble representations. Szafir and

colleagues (2016) suggested a taxonomy of data visualizations tasks linked to

various aspects of ensemble perception. Identification includes screening raw

data for outliers or searching for a group with an average substantially different

than other groups (Section 5.3.2). Summarization of multiple values via descrip-

tive statistics directly relates to ensemble statistics, such as spatial positions along

axes. Segmentation involves an ability to parse data into clusters, as in ensemble-

based categorization and segmentation (Section 5.3.1). Finally, estimating the

structure of data patterns is in many ways analogous to economical ensemble

descriptions that facilitate gist perception without needing to individuate items

(Section 5.1.1).

Investigations of graphical perception have replicated several fundamental

results from ensemble perception studies. For example, Fouriezos and col-

leagues (2008) reported participants’ judgments of the average heights of

clusters of bar plot bars were subject to the same range and set size effects

observed in ensemble averaging tasks across feature domains (Section 3.2.2).

Similarly, correlation discrimination follows fundamental laws of perception,

such that just noticeable differences between two scatterplots increase in pro-

portion to the absolute distance from one, conforming to Weber’s Law

(Harrison et al., 2014; Rensink & Baldridge, 2010). Rensink (2017) asked

participants to determine which of two side-by-side scatter plots were more

correlated and to adjust a test plot until its perceived correlation was at the

midpoint between two reference points. Discrimination performance increased

as a linear function of the difference between the depicted correlations, and the

magnitude of the perceived correlation grew as a log function of the correlation,
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suggesting an abstract statistic of information entropy underlies correlation

perception providing a rapid global impression of apparent order. A later

comparative study by Yang and colleagues (2018) clarified other basic features

such as area of the dot cloud and variance in distances of individual dots from

the trend line also contribute to rapid correlation perception.

On the contrary, some findings from visualization perception studies are not

predicted by ensemble perception. For example, although observers intuitively

capture the mean of various features (Section 2.1), they misconceive central

tendency when reading histograms (e.g., mistaking the highest bar as the mode;

Cui & Liu, 2021). Given observers are usually better at estimating averages than

totals (Section 3.3.5), Yuan and colleagues’ (2019) findings that observers relied

on the total area of bar clusters when judging mean height are also surprising.

Overall, data visualization is a complex phenomenon, clearly not limited to

rough ensemble representations yet likely subserved by at least a subset of the

same basic perceptual mechanisms.

5.7.2 “Wisdom of Ensembles”

Ideas from the ensemble perception literature can also be abstracted to potentially

solve a range of real-world safety-critical problems. For example, findings that

the limited capacity visual system averages estimates to boost precision and

decrease noise (Section 5.1.2) align with the “wisdom of crowds.” Galton

(1907) first noted the average of 787 individuals’ estimates of the weight of an

ox was closer to the actual value than any individual’s estimate. This power of

averaging has also been studied in the context of “the crowd within” individual

observers. Vul and Pashler (2008) asked observers to make two different esti-

mates about real-world knowledge (e.g., “What percentage of the world’s airports

are in the United States?”) either within the same session or separated by a three-

week delay. When a given observer’s estimates were averaged, those made with

a three-week delay were significantly more precise owing to increased independ-

ence from the temporal delay. Corbett and colleagues (2011) further tested

whether this sort of boost from independence applied to a given observer’s

estimates of numerosity of patches of dots in an n-back paradigm. When an

individual’s estimates of the same numerositywere averaged, the average became

more precise the further apart in time estimates were made. These results parallel

the visual system’s intelligent approach of averaging redundant information to

increase precision and decrease noise.

Abstracting from findings that the visual system capitalizes on regularities by

sampling the most unique information can lead to innovative approaches to real-

world safety-critical problems. For example, since Wolfe and colleagues’ (2005)
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report even experts miss around 30 percent of rare targets (e.g., tumors in

mammograms, weapons in baggage scans), there have been countless behav-

ioral and algorithmic attempts to boost detection performance in these critical

situations. However, none have approached this question from the standpoint

of a limited capacity system (e.g., a small pool of trained baggage scanners or

radiologists). Along these lines, Corbett and Munneke (2018) asked observers

to make continuous estimates of whether a given image of nine items con-

tained a rare target (a tool as proxy for weapons in baggage scans and a tumor

in a mammogram), or a frequent target such a Gabor larger or smaller than all

other items. Importantly, observers performed these tasks independently

without knowledge their performance would be combined. Their estimates

in the rare target tasks were then paired based on the most decorrelated

patterns of performance in the basic Gabors tasks, yielding up to

a 22 percent increase in signal detection in the rare target tasks. Considering

findings that serial dependence introduces systematic bias in individual radi-

ologists’ judgments (Manassi et al., 2021), this boost in detection from pairing

judgments based on maximally decorrelated individual differences sharply

underscores the power of averaging when there is a limited capacity for

individual sampling.

Overall, intelligent strategies like ensemble encoding emerge from the

limited capacity human information processing system with important implica-

tions for maximizing performance in many real-world tasks. As our understand-

ing of ensemble encoding’s fundamental role in human information processing

expands, so will the potential for such applications. Importantly, computational

approaches, including artificial intelligence may never fully approximate

human information processing unless starting from this limited-capacity stand-

point. Strategies like ensemble encoding can be “built-in” to existing systems.

Yet, without necessitating such heuristics, the perhaps unlimited number of

human perceptual abilities yet to be uncovered will not likely naturally emerge

from an artificial system.

By capitalizing on structure and redundancy inherent in the surrounding

environment, statistical representations provide efficient means for rapidly

getting the gist of noisy sensory inputs. This summary processing gives rise to

our ability to rapidly detect outliers, group and categorize information. Learning

regularities in sensory input provides a means of mediating between the needs to

maintain stable perception in an ever-dynamic environment while still being

able to detect salient changes. This “smart” perception is an emergent heuristic

of our limited capacity information processing system and may explain why

humans exceed the performance of even the most advanced algorithmic

approaches in a range of real-world situations.
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6 Conclusions

Ensemble encoding is ubiquitous in human information processing, with poten-

tially an unlimited number of features summarized by different statistical

descriptors across multiple sensory modalities. Considering the basic percep-

tual nature of ensemble encoding and substantial evidence it operates over both

space and time, the potential function roles of efficient summary encoding will

likely also continue to grow as we uncover new ways in which statistical

summaries of environmental regularities shape perception.

Although a number of studies have found different attentional manipulations

subsequently modulate ensemble encoding in various ways, these statistical

summaries nonetheless persist even in patients with impaired or alternative

attentional abilities. In fact, no study as of yet has empirically demonstrated

a way to prevent ensemble encoding, even when this is disadvantageous to

performance, can warp memories, or even induce false memories. From this

perspective, ensemble encoding is a distinct, more fundamental process than

attentional scrutiny, allowing for immediate perceptual representations of the

overwhelming majority of information.

We argue ensemble encoding can be best understood within the context of our

RHT/population coding account. In this theoretical andmechanistic framework,

feedforward and feedback connections underscore the pervasiveness of ensem-

ble encoding with representations active at multiple stages of information

processing. Overall, ensemble encoding is a viable mechanism for pooling

samples to compress information and reduce error, seemingly involved in

every aspect of perception from how we rapidly interpret the gist of a scene to

how we remember, categorize, segment, and learn information, underscoring

their basic and fundamental nature, likely to have evolved as part of an older

information processing system in response to regularities inherent in the sur-

rounding environment.

Our proposal that ensemble representations are a fundamental consequence

of a limited capacity system is somewhat contrary to previous proposals that it

functions as a coping mechanism to bypass capacity limitations. Along these

lines, it is necessary to reshape how we think about ensemble encoding not so

much as a mathematical operation, but as a summary form of representation.

Throughout this Element, we have noted numerous discrepant findings stem-

ming from studies using displays of items well within the capacity of focused

attentional processing. Future studies must employ larger set sizes to accurately

inform our understanding of ensemble encoding.

Our knowledge of ensemble encoding has grown exponentially since Ariely

(2001) formalized the conversation.We are only beginning to realize the powerful
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and wide-reaching applications. It is our hope that future studies inspired by the

collection of ideas in this Element will serve as a springboard for new applications

and a scaffolding to strengthen the link between other foundational ideas in

perception described over the entire ensemble of work in this Elements in

Perception Series.
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